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ABSTRACT: Starting from FEj; and the space-time translations we construct an algebra
that promotes the global Fq1 symmetries to local ones, and consider all its possible massive
deformations. The Jacobi identities imply that such deformations are uniquely determined
by a single tensor that belongs to the same representation of the internal symmetry group
as the D — 1 forms specified by E1;. The non-linear realisation of the deformed algebra
gives the field strengths of the theory which are those of any possible gauged maximal
supergravity theory in any dimension. All the possible deformed algebras are in one to one
correspondence with all the possible massive maximal supergravity theories. The hierarchy
of fields inherent in the F7; formulation plays an important role in the derivation. The
tensor that determines the deformation can be identified with the embedding tensor used
previously to parameterise gauged supergravities. Thus we provide a very efficient, simple
and unified derivation of all the field strengths and gauge transformations of all maximal
gauged supergravities from Fq1. The dynamics arises as a set of first order duality relations
among these field strengths.
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The maximal supergravity theories have played a key role in our understanding of string

theory. The gauged supergravity theories have been studied for 25 years beginning with



the first paper [1] which found an SO(8) gauged theory within the D = 4, N = 8 theory.
These theories are sometimes called massive theories in that they are a deformation of the
massless theory by a massive parameter. They have generally been found by starting from
the massless supergravity theory in the dimension of interest and adding a deformation to
the action such as a cosmological constant or a non-abelian interaction for the vectors and
using supersymmetry closure to complete the theory. In relatively recent years all maximal
gauged supergravity theories in each dimension D has been classified in terms of a single
object called the embedding tensor which can be thought of as belonging to a representation
of the internal symmetry group of the supergravity theory in D dimensions [2-8]. Thus for
example all the gauged supergravity theories in five dimensions are parametrised modulo
further constraints by an embedding tensor in the 351 of the symmetry group Fg.

Certain gauged supergravities have played an important role in more recent develop-
ments. Two of the most important examples are the five dimensional gauged supergravity
theory which results from dimensionally reducing the ten dimensional IIB supergravity
theory on S° which is central to the AdS/CFT conjecture and those theories that occur in
flux compactifications with a view to moduli stabilisation. However, it is fair to say that
gauged supergravities in general have not been fitted into any conventional discussions of
M theory.

It was conjectured in 2001 that the theory underlying string theory should possess
an F1; symmetry and indeed the non-linear realisation of this symmetry contained the
eleven dimensional supergravity theory [9]. By taking different decompositions of Fy; one
finds different supergravity theories. In particular, to find the theory in D dimensions one
performs the decomposition of F1; into GL(D,R) ® G which corresponds to the algebra
remaining after deleting the Dth node of the E1; Dynkin diagram. In particular in ten
dimensions one finds two theories which have at low levels precisely the content of the
ITA and IIB supergravity theories [9, 10]. Moreover, the Romans theory was found to
be a non-linear realisation [11] which includes all form fields up to and including a 9-
form with a corresponding set of generators. This 9-form is automatically encoded in
the non-linear realisation of Ey; [12], and its 10-form field-strength is dual to Romans
cosmological constant.

More recently the from fields, that is those field with only completely anti-symmetrised
Lorentz indices, were found in all dimensions, D [13, 14]. These include the D — 1 forms
in the D-dimensional theory whose equation of motion generically leads to a cosmological
constant. As such the number of such forms should correspond to the number of gauged
supergravity theories and indeed the representation of the D —1 forms is precisely the same
as that of the embedding tensor used to classify the gauged supergravity theories. It was
therefore apparent that £1; encoded all the possible maximal gauged supergravity theories.
Thus for the first time the gauged supergravities were included in some underlying unifying
formulation rather that found as the possible massive deformations in each dimension.

A feature that is always present in the FEq; theories in different dimensions is that
every form field has a corresponding dual field, indeed if the n-form fields belong to the
representation R, then we also find D — n — 2-dual form fields in the complex conjugate
representation, i.e. Rp_n_2 = Ry. This was already apparent in the case of eleven dimen-



sions and the ITA and IIB theories [9, 10]. As mentioned above the rank D — 1 forms are
dual to a cosmological constant while the rank D forms are not dual to anything but play
an important role in brane associated dynamics. This can be thought of as a hierarchy of
fields of ascending rank.

The results in the two paragraphs above are of a purely kinematical nature, however,
progress has been made in constructing the dynamics of gauged supergravity theories using
E4;. Initially this was achieved using the so called [; representation [15] to provide an Fqy
covariant generalised space-time [16]. While wishing to continue with this approach at a
future date we also pursued an alternative more bottom up approach introducing only the
usual D-dimensional space-time, with its corresponding space-time translations operator
and at the same time extending the Fq; algebra to include generators that had the effect
of making local all the rigid Borel Ej; transformations [17]. These so called Ogievetsky
generators lead in the non-linear realisation to fields that can be eliminated covariantly and
do not appear in the final dynamics. Nonetheless they play a crucial role in determining
the field strengths of all the fields. Therefore, the algebra formed by the non-negative
level E1; generators, the D-dimensional space-time translation generator and the above
mentioned Ogievetsky generators, called E{OIC?)I in [17], determines the field strengths of
the massless maximal supergravity theories in any dimension. It also emerged in [17]
that in the case of gauged supergravities the final dynamics is controlled by a massive
deformation Ei"l‘% of the algebra EﬁfaDl, in which the deformed Fq; generators have a non-
trivial commutation relation with the momentum operator. This was shown in detail for
the case of the Scherk-Schwarz reduction of IIB to nine dimensions, the five-dimensional
gauged maximal supergravity and Romans massive ITA theory. In the first case it was also
shown that E%‘{CSI is a subalgebra of the algebra Eﬁc% p that describes the IIB theory in
ten dimensions, while the last case reproduced the results of [11], where the field strengths
of the Romans theory were constructed adopting a non-trivial commutator between the
F1 generators and momentum.

We note that gauged supergravities have also been discussed from the Ejq [18] view-
point. In particular the case of Romans ITA was discussed in [19] while the case of maximal
gauged supergravity in three dimensions was analysed in [20].

In this paper we continue the analysis of [17] and construct all the massive deformations
in each dimension. We find that the underlying E1; algebra and the Jacobi identities imply
that the deformations in a given dimension are uniquely determined by one object that
belongs to the same representation as the D — 1 form generators and so can be identified
with the embedding tensor used previously to classify gauged supergravity theories. We
use the algebra to construct in a simple way all the fields strengths of all the gauged
supergravities in all dimensions. The dynamics then arises as first order equations that are
duality relations among these field strengths. In particular, the scalar equation results from
the curl of the duality relation between the D — 2-form fields and the scalars, using also
the fact that the D — 1-form field is dual to the embedding tensor. In general there is more
than one gauge covariant quantity that one can construct contracting the scalars with
the embedding tensor, and this procedure does not determine their relative coefficient,
and therefore does not determine the exact form of the scalar potential. We analyse



each dimension from three to nine, and these results, together with the ten-dimensional
deformation corresponding to the Romans theory analysed in [17], give the field strengths
of all possible massive maximal supergravities in any dimension.

The paper is organised as follows. In section 2 we derive the general method of con-
structing the deformed Fy; algebra in any dimension. In section D, with D =3,...,9, we
explicitly derive the deformed algebra in a given dimension D. In section 10 we discuss the
form of the duality relations that the various field strengths must satisfy in any dimension,
and section 11 contains the conclusions. The paper also contains three appendices. In
appendix A we review some group theoretic techniques and we derive from FEy; the rele-
vant projection formulae used in the paper. In appendix B we explicitly evaluate the field
strengths in the general notation of section 2. In appendix C we derive the field strengths
of the four-dimensional theory using a different method, that is based on the non-linear
realisation of F1; ®, [y and applies in four dimensions the analysis that was carried out
in [16] in the five-dimensional case.

2 The general method

We wish to consider the formulation of the Fy; algebra appropriate to D dimensions which
can be found by decomposing Fy; with respect to the algebra that results from deleting
the Dth node of the Ej; Dynkin diagram. This resulting algebra is SL(D,R) ® G where
SL(D,R) is associated with D-dimensional gravity and G is the internal symmetry algebra.
The resulting form generators, that is those with only anti-symmetric Lorentz indices, are
explicitly given in the later sections. In this section, we are interested in a universal
treatment valid for every dimension and so we introduce a corresponding notation. We
denote the form generators as R @ Mn and the generators with no Lorentz indices are
written as R®. The latter generators are those of the internal symmetry algebra, G and the
generators R %Mn carry the representation Ry, of G which transforms the M,, indices.
We note that in this notation Ry is the adjoint representation. For example, in the case
of five dimensions G = Eg and the form generators are given in eq. (5.1).
The Fq; algebra involving the form generators is then given by

[Ral---armMm’Rbl---bn,Nn] — meNnPn+mRa1---ambl---bnvpn+m (2.1)

and
[Ra7Ra1...am,Mm] _ (Da)NmMmRal"'am’Nm, [RQ,R’G] _ fa,B,yRﬂ/ , (2.2)

where fMmNnp

n+m

following in several examples. By studying the table of [13] of forms contained in Fj;, which

are generalised structure constants whose form will be shown in the

is table 1 in this paper (observe that the table contains the representations of the fields,
which are the complex conjugate of the representations of the corresponding generators),
one finds that in all dimensions the representation of the 4-form generators is in the anti-
symmetric tensor representation formed from two representations Rg and so it has indices
Rorazbiba,MaN2 _ paiazbiba,[MaNy]

[M3Ns]. As such we may write the 4-form generators as ;



in terms of our general notation the indices M, are for this generators represented by
[M3Ns]. As a result the commutator of two 2-form generators can be written as

[R0102M27R5152N2] — R®1a2b1b2,M2N2 , (2.3)
where we have taken the constant of proportionality in the commutator to be one as this
commutation relation can be taken to define the way the four form generator appears in
the Fq; algebra. The particularly simple form of this commutator will prove to be useful in
this paper. Some other related observations that will be useful are that R; ® Ry, contains
the representation Ry 1 and that Ry, = Rp_pn_o for n # D — 1, D. The first implies that
one can find all form generators by taking repeated commutators of the one form generators
and the second reflects that in the Ej; formulation one finds dual fields for all the form
fields usually associated with the physical degrees of freedom of the theory. Taking n =0
we find that Rp_o = Rg which is the adjoint representation and so it is real.

In fact the above algebra contains the Fqq1 form generators that have positive level with
respect to the level associated with node deletion discussed above. It is a truncation of
the Fqp algebra to contain just these generators. Clearly, egs. (2.1) and (2.2) obey certain
Jacobi identities which imply, for example, that the structure constants are invariant tensors
of the internal symmetry group GG. However, the structure constants also obey restrictions
resulting from their Fq; origin. These result from the Jacobi identities, but also from the
construction of Fy; from its Chevalley generators. In particular, the left hand side of the
commutator of eq. (2.1) implies that the form generators on the right hand side must belong
to the Ry ® Ry, representation of G, however, only the Ry 1, representation arises. As a
result, the structure constant fMm™Nn p +m Mmust obey the conditions that project onto only
this latter representation. A particular example, that will be important for what follows,
is the case for m =1 and n = D — 2 whose corresponding commutator has the form

[Ral,NljRag...aD_l,a] — leaM Ralag...aD_l,MD_l (24)

D—-1

where the generator on the right hand side corresponds to the next to space-filling form
fields that give rise in the non-linear realisation to the cosmological constant. Here we
have used that Rp_» is the adjoint representation and so is labelled by «, 3,.... For the
cases of D = 4,5,6 i.e. By and Eg and E5 = D5 the Ry ® Rygqj contains three irreducible
representations, only one of which is the representation to which the next to space-filling
generators belong. For the other dimensions one finds more representations in the tensor
product, but in all cases there are two or more representations in the tensor product that
must be projected out to find the representation, or for D = 9,8,7,3 the two presentations
to which the next to space-filling generators belong ( see table 2). As such the structure

constants fMy, . must obey at least two projections conditions that turn out to be of

1
the form

(DOé)NlleNlaND71 =0, (DﬁDa)NlleNlaND71 - CfMlﬁND71 (2'5)

for a suitable constant c¢. Such projector conditions are discussed in more detail in ap-
pendix A.



To the Fy; algebra we add, as explained in reference [17], the space-time translation
operator P, and an infinite number of so called Ogievetsky generators. In fact for our pur-
poses we need only add the lowest order such generators, K®?1-0n:Mn which by definition
obey the commutator

[Ka,bl...bn,Mn’ Pc] _ (SgRbl"'bn’M" _ 5£aRb1...bn},Mn ) (26)

As this equation makes clear the generator K®01-0n,Mn

is associated with the Ey; genera-
tors RV1bn:Mn and carries the same internal symmetry representation, Ry. It also satisfies
Klabi-bn].Mn — (- The Ogievetsky generators rotate into themselves under the action of the
FE4q generators and the commutator of two Ogievetsky generators gives another Ogievetsky
generator. We take the space-time translation operator P, to commute with the positive
level generators of E1q. Indeed, it is this requirement that forces us to consider only the
positive level generators of E1j.

We now consider a massive deformation of the above algebra which is parameterised

by the symbol g and given by

[Ral...am,Mm Rbl...bn,Mn] — meNn Ral~~~amb1---bn,Pn+m
’

Pn+m

—i—gLMmN"p . 71K[a1,a2---am}b1---bn,Pn+m71 (2.7
[Ra’Ral...am,Mm] _ (Da)NmMmRm...am,Nm (28)
[Ral'”am’Mm, c] _ _gWMmMm715[GlRaQ...amLMmfl (2.9)
[Ka,bl...bn,Mn Pc] _ 5aRb1...bn,Mn _ 6[aRb1"'b"]’M"
) C (&
+gUMnMn,15([3b1lemeanMﬂil7 (210)

while the deformation of eq. (2.3) for the commutator of two two forms is given by

[}%alagMQ7 RbleNQ] — RalalebQ,MZNQ + gVMQNQPSK[ahaQ}ble’PS . (211)

For the case of the 4-form generator eq. (2.9) can be written as

[Ral...a4,M2N2 Pc] — _gWM2N2P35[a1 Rag...ad,Pg . (212)
The above commutators preserve the grading [R] = 0, [P] = —1, [K] = 1 provided we also
assign [g] = —1 to the constant g. For each set of objects W we find a different deformation

of the Fq; algebra. The deformed algebra of eq. (2.7) to (2.12) is the general version
of that given in [17] for special cases such as that for the the gauged nine-dimensional
supergravity that arises from Scherk-Schwarz reduction of IIB, gauged five-dimensional
maximal supergravity and Romans massive ITA.

We define Wé\; L= @Né = OM as the index Qg is the index on R?0 which is just the
index a. In terms of this notation the lowest order example of eq. (2.12) is given by

[R*™M P = —g6t@N RY . (2.13)

We will see that O will turn out to be the embedding tensor discussed so much in the

literature on gauged supergravities.



The ©)1 like all the objects W, are not invariant tensors of the internal symmetry
group G. One can think of them as a kind of spurion; for each allowed value of ©)1 one
finds a different gauged supergravity, for example the local gauge group is determined by
the value of ©).

We will now work out the consequences of the Jacobi identities for the deformed algebra
of egs. (2.7) to (2.11). We begin with the Jacobi identities that arise from taking two Ejq
generators and P.. These will place linear conditions on W n+1 s, as we have only one F..
In particular we first consider the identity

(R, Rhv-bosta), B = [RM: (RO, BJ| 4 [[RM, B RO-M] - (2.14)

We evaluate this using egs. (2.7) to (2.13). Not all structures of Lorentz indices that arise
are independent due to the identity

As such it suffices to consider the coefficients of only the terms involving 5£aRb1b2“'b"] and
those of the form 62 RY1%2:+b» and use the above equation to express any other contributions
in terms of these two forms. We find that at order ¢ this leads, respectively, to the

two equations
fManPn+1WPn+1Sn _ Xanann _ fMlQn—ISnWNnQn71 (2.16)

and 1
LManPn — _EfMlanlanNnPn _Xanp Nn (217)

n

where X, Mig Nn = @M1 (D%)g Nn.

As noted above, the representation R; ® Ry, always contains the representation Ry11
and so the structure constant fNnp 41 can be inverted to leave only WPhnt1g on the
right-hand side of eq. (2.14). Thus this equation solves for Wn+1g in terms of Ot and
the lower level Wng | and these equations provide a set of recursion relations that allow
one to solve for all the W¥n+1g ’s in terms of ©M1. Eq. (2.12) then just gives LM1Vn
terms of O,

At order g2 we find that the Jacobi identity of eq. (2.16) implies the relation

p, in

LMWNnp UPng = [MiQnoag  pyNe, (2.18)

At lowest order eq. (2.14) implies that
PN W = ox, (Mg M) (2.19)

In deriving this relation we have used that
(B0 O] = P Y g, e = XM (2on)

since in terms of our notation fMi®Qug = —fQoM g — (DY) g M and using our earlier
definition O = Wi .



While we have solved for all the W’s in terms of © using the above equations it is more
practical to do this step for the W involved with the 4-form generator using the Jacobi
identity

[Reesbie Roeey, P — [Roioaile, (RN, P+ [[RO02Y, PR (221)

and egs. (2.11) and (2.12) rather than the Jacobi identity of eq. (2.14) for the case of
m =1 and n = 3. Using similar arguments to those deployed above, we find at order g'

the two equations

WM2N2 Ry = — N2 Ri fR1M2 Ry T+ VVMQR1 fR1N2R3 (2.22)

and

VM2 p oy M N (2.23)

Clearly, these solve for I/VM?NQB3 and VMQNQRS in terms of W™2g and so in terms of
OM R*, while at order g? we find that eq. (2.21) implies that
1
gVM2N2P3UP3P2 = —LRlM2p2I/VIJ%VI2 . (2.24)
It will be useful to also consider the Jacobi identity

@M1 g [Ru-antn p) = [@NM R Ru-antn] P (2.25)

since [R%, P.] = 0. It implies that

Ny anlwpn

N Py, n
Xn—anfl Qn-1 — anQn WQ Rop—1 - (2'26)

We now consider the consequences of the Jacobi identities that involve one Fj; gen-
erator R¥%Fn and the generators P, and P,;. This implies a quadratic constraint on
Whng, ,’s that is given by

Whg WO-1p =0 . (2.27)

n—2
At the lowest order, i.e. n =1, eq. (2.26) implies that
XMoo eg =eM el (2.28)
Finally we consider the Jacobi identity with K®b1bnMn and P, and P;, namely
[[Ka’bl”'b”’M",Pc],Pd] _ [[Ka’bl'”b”’M",Pd],Pc] =0 , (229)

as [P, Py] = 0. At order g' we find that

n
ukn = whn 2.30
Pn-1 n+1 Pn-1 > ( )

while at order ¢ we find that

UPrp, ,UPp, , =0 . (2.31)



The first equation solves for U p _ in terms of W p | and so in terms of ©)1. Using
eq. (2.28) and eq. (2.30) we observe that eq. (2.31) is automatically solved. Furthermore
substituting eq. (2.30) into eq. (2.24) we find it is automatically satisfied using eq. (2.17).

We now summarise the content of this section so far. The deformation of the algebra of
WM’” M.

m—17

eqs. (2.7) to (2.12) involves a number of the constants, namely LmNn
UP”p

n—17

Pn+m717
VM2Nz - and WM2N2p - However, the Jacobi identities imply that all of these

may be solved in terms of the W’s and these are in turn determined in terms of the single
N1

object ON1. Thus the entire deformation is determined in terms of ONt,

eq. (2.13).

However, the above equations also impose constraints on ©N1. Clearly, there are the

or equivalently

quadratic constraints of eq. (2.28) which are a set of constraints on ©)1 once we have
substituted for the W’s in terms of ©)1. However, we also have a set of linear constraints
that originate from eq. (2.16) whose right hand side can be expressed entirely in terms of
@g 1, a variable in which it is linear. As explained above the structure constant that occurs
in the commutator of eq. (2.1) obeys projector conditions arising from the fact that the form
generators on the right hand side do not belong to the representation Ry, ® Ry, but only to
the representation Ry m that it contains. The number of projection conditions correspond
to the number of irreducible representation in Ry, ® R, which are not contained in the
representation Ry m. However, certain of these structure constants, i.e. f MiNn P,y appear
on the left hand side of eq. (2.16) and so the object O that appears on the right hand
side of this equation will satisfy corresponding constraints. In particular, taking n = D — 2
in eq. (2.16) we find the structure constant fM1%p_ on the left hand side which obeys the
constraints of eq. (2.5) for the cases of dimensions four, five and six. This is evident from
table 2 where we find that in these dimensions the representation R; ® Rg contains three
irreducible representations only one of which is Rp_1. As explained in appendix A this is
a consequence of the fact that for these dimensions R is the fundamental representation
of the internal symmetry group. In other dimensions one has to project out more than two
irreducible representations from R; ® Rg to leave the representation Rp_1 (see table 2)

and so one has more projection conditions on the structure constant fM%p ~ and so on

1
ON. Thus in dimensions four, five and six we will find two linear conditions on ©)* which

are evaluated in detail later in this paper and are found to be
(D) N, Mel =0 (2.32)

and

(DgD*)n, "M O = cOgh (2.33)
where ¢ is a constant plus possible further constraints. In dimension other than four, five
and six we find these constraints as well as further constraints. However, in dimensions
other than three, four, five and six one finds that all the conditions on ©)1 already arise at
lower levels than n = D — 2 from similar conditions on the corresponding lower level struc-
ture constants. Hence, a priori although © could belong to the representation Ry ® Rg
the constraints discussed above, and derived in detail in each dimension in later sections,
restrict it to actually belong to the same representation as the D — 1 form generators i.e.
the Rp_1 representation in all dimensions.



To summarise this section so far. We have found that the deformation is uniquely
determined in terms of ON' and will find, taking account of results in later sections, that
this object obeys constraints that imply that it belongs to the same representation as the
D — 1 form generators.

We turn our attention to the construction of the field strengths from the Cartan forms.
We write the group element of the algebra of egs. (2.7) to (2.12) in the form

g= ¢ FagP K AR (2.34)

where

AR Ralmamil,lvlmil

am, M,
e — . eAaram My, ROTAmeMm A

A Oy 1, My 1

M M
Aajag My RUT2T2 JAay g RO

e g (2.35)

P-K

where g, = e and e is a similar expression involving the Ogievetsky fields and

generators. The field strengths are contained in the Cartan forms which we can write as
g tdg =V y® 4 (2.36)

where V™ is the contribution at ¢". The full calculation involves many terms but we
are only interested in the field strengths and so we will only keep terms that contain FEij

Mn The coefficients

generators. These contain terms of the form da#Gq, .. a, M, R4
Grai...an,M, are not totally anti-symmetrised in all their pay ... a, indices, but the terms
that are not are set to zero using the inverse Higgs mechanism which solves for the cor-
responding Ogievetsky field. This mechanism is discussed in detail in reference [17]. The
term that is totally anti-symmetrised is the field strength and as this is what is needed
for the dynamics we will compute only this term. To carry out this task we only need the
commutation relation of egs. (2.7) and (2.9) and need not include the Ogievetsky fields in
our computations.

Let us denote the totally anti-symmetric part of V by V4 and write it as

1 v 1 y
Va = Z m—_HFual...am,MmRalmam’ "= g¢1 Z o 1Fua1...am7MmRa1"'am’ "
m m
(2.37)

where Flia,  anm My = Fluay...am], M- We denote the order g” contribution by FlEZ)1~~~am,Mm’
and the structure of the algebra is such that only the order zero and the first order in g
occur. The factors of g, lead to the matrix functions (e=?>P%),, M where (D), M is in
the corresponding representation Ry,. That is Fﬂal---am,Mm = (e_‘paDa)MmNmFual,,,amNm.
As these extra factors involving the scalars just complicate the formulae we will only
explicitly compute the Fq, . q,,,M,,- The scalar factor just converts Fjq, .. a,, M, Which is
in the linear representation Ry, into FMGI---(Mm M,, Which is in a non-linear representation of
the internal symmetry, in fact transforming by a non-linear local subgroup rotation.

The terms in VS)) are just the field strengths found from the Fj; algebra without

any deformation and these have been computed in several cases before. We will begin by
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computing these terms for any dimension making use of the notation developed above. We
use the well known relation

R
e de” = T *dA s (238)

where A is a generic operator and the x-product is defined by
AxB=[A,B] , AP«B=[AA""'xB] . (2.39)

We note that

[Aal...am,MmRalmam,Mmy Rbl...bn,Nn] — La1...aum+nNnRalmamblmbn’Pm-’_n ’ (240)
where
Np MmN,

Lal...aum+n "= Aa/l...am7Mmf m an+n (241)

Using these conventions we may also evaluate
Aal...am,MmRalmam,Mm *Abl...bn,Manl.“bn,Mn *Rcl...cp,Pp
P, ...amby...b ...cp P,
= {Lay..ap Lbr..b } Py PR OOttt Pty (9 42)

where the two L factors are multiplied using matrix multiplication on their internal sym-
metry indices.

Denoting with

Ralmam,lvlm

g?{b — eAa14.4am,J\/Im (243)
and
< Ag, RO1-am—1Mm_1 Agia Reta2. Mz 4, RO1,M1
ga" = e rtmot o L eflanen eflar e (244)
we write
0) _ <m\—1/ m\—1j3 m _<m
Vi = (g5 N gh) g g5 (2.45)
m

This expression can be evaluated using eq. (2.38). The result is further simplified by using
the language of forms. We find that

0) a am (_1)n1 (_1)nT_1 (_1)1%
Frar o am N4z Adz® AN datm = (m+ 1) m:n il e (1]
dat ALY A ALOYLD A ALDY (LA AL, N0, AN,
(2.46)

where 0,An, = 0,A4 . a N dx™ A ... A\ dz® and Lm) e = Ay am M AT A LN
dz@m fMme - The sum being over all integers n, such that m = n; +2ng + ... + (r —
Dnp—1 +7r(n, +1).
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We now compute the analogous terms at order g', that is those involving totally anti-
symmetric indices and Ej; generators. Using eq. (2.9) we find that

V1(41) — G_A.Rd.IMPﬂGA.R (247)

my— 1- (gm)—l
= QZ(QE ) 114 éal---amme X

ai...am,Mm

N, ai...am—1,Nm— <m a
xW mNm_1dxMA,ua1...am_1,NmR LGm=1,m—1 aa —|—d$“6ﬂ P,

Further evaluating this expression using the above notation we find that

N e

W
ny! ny—1! (n, +1)!

Ha...am,Nm

dzt Ndz™ . N dxt™ = (m+1)g< Z

N yeeey Ny

dat A(LO A ALOYLO A ALD) (LA AL, NNy AT

_1)ym
_7(n+)1!dx“ NS A_”AL(l)}NleX{lelMlAg\?lA%) , (2.48)

where A;(ZVT = Ajar.ap_1 N AT A Adz? 1 and Ag\?l = Ay adx®. The sum is such that
m =mny+2ny+ ...+ (r — 1)(n.—1 + 1) + rn,, there being n, factors of L) in the first
term, where r must be greater than 1, and m — 1 factors of LW in the second term. The
contribution to the one form field strength consists of the term gA,u, de*©X1 R,

To summarise this section. We have found all deformations of the form of egqs. (2.7)
to (2.12) are determined by the one variable ©N' and this belongs to the same representation
as the D — 1 forms, i.e. Rp_1, as well as satisfying certain quadratic constraints. We
have computed the fields strengths that occur in the non-linear realisation of the deformed
algebra. Thus we have found all the field strengths of all the maximal supergravities in all
dimensions. We have therefore reduced the computation of the field strengths and gauge
transformations of gauged supergravities to a purely algebraic construction based on Fi.

To conclude this section, we discuss the gauge transformations of the fields. These
arise in the non-linear realisation as rigid transformations of the group element, g — gog,
as long as one includes the Ogievetsky generators [17]. In particular, in the massless theory
the action of

9o = exP(da, .y v, R N) (2.49)

generates a global transformation of the fields of parameter aqy,. 4, n,, and the net effect
of including the Ogievetsky generators is to promote this global symmetry to a local one
via the identification

Qqy...an,Nn — a[alAag...an],Nn . (250)

In the massive theory, this is modified due to the fact that the Fq; generators have non-

trivial commutation relations with the momentum operator. If one acts with gy as in
P,

eq. (2.49) on the group element of eq. (2.34) and uses eq. (2.9), passing through e
generates the term

exp(—gW™ N, 2% aq,..ay N, B2 N01) (2.51)

- 12 —



Therefore, together with the constant transformation generated by the action of the term
in eq. (2.49), the massive theory develops a transformation that is linear in z. The inclusion
of the Og generators then has the net effect of promoting a,, ..., ~, to a local parameter,
and the gauge transformation of the fields is obtained by taking the global aq, .. q, N, of
the massless theory and making the identification

ay...anNo = Oy Nas.an], Ny — gWNn+anAal----an7Nn+l (2.52)

instead of that of eq. (2.50). Indeed taking Ag,. 4, ,,n, to be at most linear in z this
identification reproduces the transformations generated by egs. (2.49) and (2.51). Therefore
the gauge transformations of all the fields in the massive theory are given by the ones of
the massless theory, provided that one makes the change

8[a1Aa2...an],Nn - a[al Aag...an},Nn - gWNn+1NnAa1----GmNn+1 : (253)

A special case is the case n = 0 in eq. (2.52), for which although the first term on the
right-hand side is not present, the second term gives a gauge transformation of parameter

—gOMipy, . (2.54)

This determines the way in which all the fields transform under the gauge parameter Az,
at order g, the field Ag, 4, N, transforming as

5Aa1---an7Nn = _g@ylAMlD?\!annAal---an7Mn . (255)

In sections from 3 to 9 we will apply the results of this section to all dimensions from 3
to 9, showing that in all cases ©M1 and the D — 1 forms belong to the same representation
and determining the field strengths and gauge transformations of all the form fields of any
maximal supergravity theory in any dimension.

3 D=3

The bosonic sector of the massless maximal supergravity theory in three dimensions [21]
describes 128 scalars parametrising the manifold Fg4g)/SO(16) and the metric. This
theory arises from the F11 decomposition appropriate to three dimensions, corresponding
to the deletion of node 3 as shown in the Dynkin diagram of figure 1. The 1-form generators
of Fq1 that arise in this decomposition belong to the 248 of Eg. The corresponding fields
are dual to the scalars. There are also 2-form generators in the 1 & 3875, the corresponding
fields having vanishing field-strength in the massless theory. We will not consider in our
analysis the 3-forms and all the generators with mixed symmetry. To summarise, we
consider the form generators

R® (248) R (248) R“%M (3875) R“% (1) |, (3.1)

where a =1, ..., 248 denotes the adjoint and M = 1,...,3875 denotes the 3875 of Eg.
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Figure 1. The F;; Dynkin diagram corresponding to 3-dimensional supergravity. The internal
symmetry group is Eg(yg)-

The Ej; commutation relations involving the generators in eq. (3.1) are

[R™ ﬁ] — faﬁ RY
(R, Raﬁ] _ fozﬁ R
[Ra Ralag] -0
[Ra Ralag, ] aMRalag,N
[Ra1, R@ﬂ] — gaﬁRalm + Sa,@RaUD, , (3.2)

where ¢*? is proportional to the Cartan-Killing metric and it is the metric we use to raise
Fs indices in the adjoint, Dj"VM are the Fg generators in the 3875 and S?f is an FEjg
invariant tensor. This invariant tensor is such that SﬁRalaQ’M belongs to the 3875, and
using the Fjg conventions and projection formulae of [22] one deduces that S]‘ff must satisfy
the further conditions

galgSj.\éf =0
1 .. 5
= /" fes?S70 . (3.3)

Indeed S?f is symmetric in o, and the symmetric product of two 248 representations is
[248 ® 248|s =1 ¢ 3875 @ 27000 . (3.4)

The conditions of eq. (3.3) project out 1 @ 27000 to ensure that S?fR“W?’M belongs to
the 3875. The Eg metric is related to the structure constant by [22]

1
g0 =~ [ (35
while another useful Eg identity is [22]

Faerf5 ol 7p" F7P7 = 246,80 + 129059 — 20/ fes” + 10" feg” . (3.6)
From the group element

M )
g — el"PeAalag R*192 eAalag,lVIRala2 eAa,aRa a6¢aRa (37)

one derives the field-strengths of the 1-forms and 2-forms. These indeed result from anti-

symmetrising the various terms in the Maurer-Cartan form, which is computed imposing
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that the generators in eq. (3.1) commute with momentum. We now consider the defor-
mations of the algebra of eq. (3.2) resulting from imposing that the generators have a
non-trivial commutation relation with momentum compatibly with the Jacobi identities.

We consider the general analysis of the previous section, applied to the three-
dimensional case via the identifications

RoLMi _, pava
RUaMe _, paiez  pavas,M
oM, - e,
whMzy, —w,, wM, . (3.8)
Eq. (2.19), resulting from the Jacobi identity of two 1-forms and momentum, reads

WMsSY + Wsg™® = 0%, f95 + 60 f1o; . (3.9)

The embedding tensor ©“3 has no a priori symmetry, and thus is in the representations
generated by the symmetric product of two 248 given in eq. (3.4) together with those
generated in the antisymmetric product

[248 © 248], = 248 & 30380 . (3.10)

We now show that eq. (3.9) rules out the possibility that the embedding tensor is
antisymmetric. Using eq. (3.3) one derives from eq. (3.9) the condition
1 1
@avaﬁé + @ﬁvfw‘s - ﬁgaﬁewfwts + EGVUJCUP&[fevafspﬁ + fepafsvﬁ] =0. (3.11)

Taking © antisymmetric and contracting 3 and ¢ this equation gives
[0, =0, (3.12)

which rules out the 248. Using this and contracting eq. (3.11) with ng‘S one then shows
that the antisymmetric part of © vanishes completely, thus ruling out the 30380 too. The
fact that the 248 is ruled out also implies

Wo=0 |, (3.13)

as can be seen contracting o and 3 in eq. (3.9).

We thus take © to be symmetric, which corresponds to the representations in
eq. (3.4). The tensor WM, has indices in 3875 @ 248, and this leads to the irre-
ducible representations

3875 © 248 = 779247 ¢ 147250 ¢ 30380 @ 3875 4 248 . (3.14)

Therefore WM, is not along the 27000. From eq. (3.9) it then follows that taking © to
be in the 27000 one gets

(0%,))27000f %5 + (©°,)27000f % =0 (3.15)
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which is inconsistent because it is the condition of invariance of ©. Therefore the 27000
is also ruled out. The invariant tensor S?f satisfies

S Susn = N (3.16)

where dp/n is the invariant tensor in the product [3875 @ 3875]g, and using this and
eq. (3.13) one can invert eq. (3.9) to get

WM =20, P58 (3.17)

that implies that W™, is in the 3875.

We have thus shown that the algebra can only be consistently deformed if the embed-
ding tensor belongs to 1 @ 3875. In the case of the singlet deformation, W vanishes and
indeed eq. (3.9) becomes the invariance of ©, which is the Cartan-Killing metric in this
case. Therefore our results reproduce the constraints on the embedding tensor found using
supersymmetry in [2]. We now show that also the quadratic constraints of [2] follow from
the consistency of the deformed F7; algebra. These come again from the general analysis
of the previous section. In particular, given that © is symmetric, both eq. (2.27) for n = 2
and eq. (2.28) give the same constraint, which is

Q%[ f5¢:070 + A0 =0 . (3.18)

This is the condition that the embedding tensor is invariant when projected by the embed-
ding tensor itself, and corresponds to the condition that the embedding tensor is invariant
under the subgroup of Eg which is gauged.

Here we have considered the Jacobi identities involving the 1-form and 2-form gen-
erators, but one can show that also the Jacobi identities involving the 3-forms close if
one considers the deformations arising from the embedding tensor in the 1 & 3875, and
more generally the whole Fq; algebra can be deformed consistently introducing this em-
bedding tensor.

In section 2 we have given a general procedure to compute the field strengths in any
dimension. This is expanded in appendix B. In the three-dimensional case, from the group
element in eq. (3.7) and the commutators derived in this section one then obtains the field
strength for the 1-form,

1
Fab,a = 2[a[aAb},a + 59655]0570414[0@6"4&,7 + gWMozAab,M] ) (319)
transforming covariantly under the gauge transformations
5Aa,oz = aaAoz - 9655]057041&614@,7 - gWMocAa,M
1 . o
0Aab,m = OaNpy s + §5Af5[aAaAb],ﬁ — 90, D§ N AgAay N

— IS W N ol oAy s (3.20)

where D]O\‘/[N are the generators in the 3875. Given the results in this section, we can also
compute the field strength of the 2-forms up to the term involving the 3-form. The result
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Figure 2. The F;; Dynkin diagram corresponding to 4-dimensional supergravity. The internal
symmetry group is Ery7).

is

[ 1
Fa1a2a3,M =3 8[a1Aa2a3],M + 55?\(463[@14(12,@14%],6 + gA[alag,NAag},aWNBS?\éf

g (0% (o8

1
Fa1a2a3 =3 a[al Aa2a3] + 590656[&1 A027C¥Aa3}76 + gA[alaLNAag},aWNﬁgaﬁ

g o
+6A[a1,aAa2,ﬁAa3m® 5 f‘*ﬁq ) (3.21)

To prove the gauge covariance of these field strengths of the 2-forms one must include the
3-forms and determine their gauge transformations.

To summarise, we have obtained the field strengths and gauge transformations of any
gauged maximal supergravity theory in three dimensions. These field strengths satisfy du-
ality conditions. In particular, the field strengths of the 1-forms are related to the derivative
of the scalars, while the field strengths of the 2-forms are related to the embedding tensor.

4 D=4

In this section we consider the Fy; decomposition relevant for the four-dimensional theory.
The corresponding Dynkin diagram is shown in figure 2. The global symmetry of four-
dimensional massless maximal supergravity [23] is E7 (7). This symmetry rotates electric
and magnetic vectors, and as such it is not a symmetry of the lagrangian, but only of the
equations of motion. This is in agreement with FEj1, in which fields and their magnetic
duals are treated on the same footing.

The bosonic field content of the supergravity theory contains 70 scalars parametrising
the manifold Fr(17)/SU(8), the metric and 28 vectors, that together with their magnetic
duals make the 56 of F;. Fq1 contains the corresponding generators, together with 2-form
generators in the 133 of E7, whose corresponding fields are dual to the scalars, 3-form
generators in the 912, together with 4-form generators in the 8645 & 133 and an infinite
number of generators with mixed symmetry in the spacetime indices. Summarising, the
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form generators are

R® (133) R®M (56) R (133) RM%2%:4 (912) RU-40 (8645 ¢ 133)
(4.1)
where a = 1,...,133, M =1,...,56 and A =1,...,912. The af indices of the 4-form are
antisymmetric, which indeed corresponds to the reducible representation 8645 ¢ 133.
The E~; algebra is
R, R = (0B (4.2

where fo‘ﬁ7 are the E7 structure constants. We also introduce the generators Dj’(ﬂN in the
56, that satisfy the commutation relation

DY, PDIN — DB PN — o8 py N (4.3)

The M indices are raised and lowered by the antisymmetric invariant metric QMY that is
for a generic object VM in the 56 we have

VM — oMNyy Vi =V (4.4)

which implies

OMNQyp = —68 . (4.5)

Raising one index of the generator Dﬁ‘/IN one gets
DYMN = QMPDaN (4.6)

which is symmetric in M N.
We now write down the rest of the algebra. The commutators between the scalars and
the other generators are dictated by the E7 representation that the generators carry. In

particular for the 1-form one has
[R*, R*M] = DM RN (4.7)

and for the 2-form
[Ra’Rala%ﬁ] — fo‘ﬁyR“l‘”” ) (4.8)

The other commutators are
[RahM, RA27N

]
[Ral,M Ragag,a]
[Rawz,a’Rasaz;,ﬁ] — Roi-as,0f

MN pajaz,x
DMNR

S%aRal azasz,A

[Ral’M, Ra2a3a4,A] _ C(%AROL1...a47aﬁ , (49)

where we have introduced the two E7 invariant tensors Si\([ “ and CO%A, the last one being

antisymmetric in . Following [3], we are using the metric

g% = D§,N DM (4.10)
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to raise and lower indices in the adjoint. This metric is proportional to the Cartan-Killing
metric, as can be seen from

Fagy [2P0 = =380 . (4.11)
A summary of the conventions for F; and Fj is given in appendix A. The Jacobi identity
involving three 1-forms produces the condition

DMN gl — (4.12)

and Si\([ @ also satisfies

DoV S4e =0 | (4.13)

which can be deduced from the fact that there is no singlet in the tensor product 56 ® 912.
Contracting eq. (4.12) with DJ%P gives

s¥e LoDy MY =0 . (4.14)

As will be described in detail in appendix A, the conditions of egs. (4.13) and (4.14) project
the M« indices of S i‘(l “ along the 912. Indeed, the only way of building an invariant from
tensoring a 912 index with the product 56 ® 133 is that this product is projected on the
912. The Jacobi identity between R*M R¥N and R gives the condition
M NA N MA MN __
SACs + 84°Cs" + 63Dy =0 . (4.15)
One can check that also all the other Jacobi identities are satisfied. We also define the

invariant tensor 24p in the antisymmetric product of two 912 representations, using the
relation

SY*Syan = QB (4.16)

and we use 24p to raise and lower indices in the 912, adopting conventions analogous to
those of eq. (4.4).

Writing down the group element

au, M
g = e"Petaragapfi 7 eAam RN g R (4.17)

one determines the field strengths of the massless theory by antisymmetrising the spacetime
indices of the various terms in the Maurer-Cartan form, and the field equations of the
supergravity theory arise as duality relations. In particular, the field-strength of the vector
satisfies self-duality conditions, while the field-strength of the 2-form in dual to the scalar
derivative. The field-strengths of the 3-forms vanish in the massless theory. In deriving
the field strengths of the massless theory one takes the positive level E71; generators to
commute with momentum. In the following we will consider the deformation of the Fqq
algebra which results from modifying the commutation relations of the Eq1 generators with
momentum compatibly with the Jacobi identities, following the general results of section 2.
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Applying the general analysis of section 2 to the four-dimensional case, one makes
the identifications

Ra M1 _, pai,M oM, ., M
Roaz, Mz _, paiaza WMy, W(%)M
Razas,Ms _ paiazag,A WMy, Wé)a
R My por-asof WM = Wela (4.18)
Eq. (2.19), arising from the Jacobi identity between two 1-forms and momentum, reads in
this case
W pDYN =2xMN (4.19)
where
XMNp, —@MpeN (4.20)

Using eq. (4.10), from eq. (4.19) one gets
Wy = —2D5 N D3 pOf . (4.21)

Eq. (2.16) for n = 2, which is the condition that the Jacobi identity involving the 1-form,
the 2-form and momentum is satisfied, reads

SY Wi = -WenDEN + e oy (4.22)

This has to be compatible with the conditions of eqgs. (4.13) and (4.12) that S satisfies.
The first condition gives

20 D p VDY +©F — XMNyDg NP =0 | (4.23)

while the second is identically satisfied. If we then contract this last equation with DgQ
we get
XMN =eMpyN =0 | (4.24)

and plugging this into (4.23) and comparing with (4.21) one obtains
Wom =05 . (4.25)
Substituting this in eq. (4.19) gives
XWMNP) —q (4.26)
and contracting this with D, yp gives
oM = 2D, yTOY DM . (4.27)

The two conditions of eqs. (4.24) and (4.27) project the embedding tensor © to belong to
the 912 of E7. Therefore we have shown that Eqq produces all the linear (or representation)
constraints on ©. The Jacobi identities at the next level then give

Wi a =205y (4.28)
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The embedding tensor also satisfies quadratic constraints that follow from the general
analysis of section 2. In particular eq. (2.28), resulting from the Jacobi identity involving
OM R R“M and momentum, together with eq. (2.27) for n = 2, resulting from the Jacobi
identity involving the 2-form and two momentum operators, and which reads in this case

QunOi el =0 | (4.29)

imply that the quantities (X*)" p are the generators of the subgroup of E; that in gauged.
This analysis thus exactly reproduces all the constraints of [7]. It is important to stress that
from Fqq1 all the constraints arise from imposing the consistency of the deformed algebra.

To summarise, the Jacobi identities impose that the commutators of the deformed Fy

generators with momentum are

[R“M, Py] = —g63 O R*
[Ralag, b] _ @a 5[01Ra2] M
[RCHCLQCL?,7 b] — SMa[ @Mf'ya ] a1 Razas] B
[Re-w0ef P — 20l Mmé[‘“R” oA (4.30)

From these commutators, as well as the F1; commutators of eq. (4.9), and using the group
element in eq. (4.17), one determines the field strengths and gauge transformations of the
fields. The result is

g
Falag,M =2 |:8[a1 Aag},M - QG%Aalag,a + EA[al,NAG,QLPXNPM]
1

Falazag,a =3 |:a[a1Aa2a3},a + §a[a1Aa2,MAa3],ND(J)\4/[N

+gSJ\AZB(®]BVD£4/IN + @yfVBa)Aalaza&A

g
_gg?wDyNA[a1a2,ﬁA03],N + EA[al7MAG’2’NA03],PXMNQD8P:|
1
Fal...a4,A =4 |:a[a1Aa2a3a4},A - S%aa[alAagag,aAa4],M - éDyNSEQa[al Aag,MAag,NAa4],P
M P
_296%/15,4 6Aa1...a4,a5 - gS]\%a( %D[JS\’/[N + ei\//[fﬂ/a,@)SAﬁA[alma?,,BAazﬂ,P
g N
%S%QA[amg,aAagaz;]ﬂ + EG%D%PSABA[alag,aAaa,Maa4],N
g

— 2 XMV RDERSG Ay 11 Ay N Aas PAai.0| (4.31)

transforming covariantly under

§Aanr = agn — 9X NP yANAap
1
5Aa1a2704 = Qajaz,a + §D(]>§4Na[a1,MAa2LN - g@g/[AMfﬂvaAalazﬁ

Mo Mo NP
5Aa1a2a3,A = Qajasas,A + SA a[al,MAagag],oz - ESA Doz A[ahMAa%NaGSLP

_g@(]yD%BAMAamgag,B (4.32)
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Figure 3. The F;; Dynkin diagram corresponding to 5-dimensional supergravity. The internal
symmetry group is Eg(y)-

1
5Aa1---a4,aﬁ = a[alAazasm]@ﬁ + §a[a1a27aAa3a4Lﬁ + C(%AG[GLMAGQ%MLA

1 N 1
- ﬁDfQC(%ASA ,YA[UH ,MAamNAaa,Paaz;],Q + ZD[J‘O{NA[maz ,ﬁ]AaavMaaz;],N

+2g@§4f67[aAMAa1...a4,ﬁ]ﬂ/ ) (433)

where D%‘B are the generators in the 912 and the parameters aq a7, Gaia0,0 @0d Ggaza3,4
are defined in terms of the gauge parameters as

Qa, M = Ou A1 +g®?\[4Aa,a
Qaqas,00 = a[alAag},a - gsﬁﬁ(@i’DyN + ef{\%ffyga)Aalaz,A
M
Qaiazaz,A = a[mAazaa},A + 29045, BAalazas,aﬁ : (4.34)

These are the field strengths and gauge transformations of any gauged maximal supergrav-
ity theory in four dimensions.

5 D=5

We now consider the five-dimensional case. The bosonic sector of the maximal massless
supergravity theory in five dimensions [24] contains 42 scalars parametrising the manifold
Eg(+6)/USp(8), the metric and a 1-form in the 27. This theory arises from the decompo-
sition of E1; appropriate to five dimensions whose Dynkin diagram is shown in figure 3.
The form generators up to the 4-form included that occur in this decomposition of Eij
with respect to GL(5,R) ® Eg are [13]

R (78) R¥M (27) R%); (27) R%e (78) Ry (351) (5.1)

where R®, o = 1,...,78 are the Eg generators, and an upstairs M index, M =1,...,27,
corresponds to the 27 representation of Fg, a downstairs M index to the 27 of Eg and the
4-forms are antisymmetric in M N, thus belonging to the 351. The commutation relations
for the Eg generators is

[R*,R°] = [P RY | (5.2)
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where faﬁ,Y are the structure constants of Fg. The commutation relations of R* with all
the other generators is determined by the Eg representations that they carry. This gives

[R®, R*M] — (D*) M R%N
(R, R™ ] = —(D*) N Ry
[R®, Rebed) — fol. Rabes
(R, Ry ] = —(D®)pP Ry — (D) NP Ry (5.3)
where (DY)n™ obey
(D%, D)™ = fo (DN (5.4)

The commutation relations of all the other generators are

[Ra’M,Rb’N] _ dMNPRabP

[Ra,N’RbcM] — gaﬁ(Da)MNRabc,ﬁ

[RabM’Rch] _ RabchN

[Ra,P’Rbcd,a] _ SozP,MNRabchN (5.5)
where dMNP is the completely symmetric invariant tensor of Eg and ¢®° is defined by

the relation
D§NDEM — god (5.6)

and is thus proportional to the Cartan-Killing metric of Fg, and is the metric that is used
to raise and lower indices in the adjoint (we are using the Eg conventions of [3], that are
summarised in appendix A). Another useful identity is

Fagy [2P0 = —480 (5.7)

GaP,MN

where f®%7 are the structure constants of Fg. is also an invariant tensor, an-

tisymmetric with respect to M N, and the Jacobi identity between two 1-forms and one
2-form gives

1 v
gopDBFSIRMN _ _Lefgmen (5.8)
Using the fact that dMN P is completely antisymmetric one derives from this the condition
Gap DN SR — (5.9)

One can show that all the Jacobi identities involving the generators are satisfied using the
commutators listed above [13].

We now show that S*-NP is proportional to D% [INgPIMQ and determine the coefficient
of proportionality. We introduce the invariant tensor dp;yp in the completely symmetric
product of three 27 indices, that satisfies [4]

d"NPdyng =045 (5.10)
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Observe that the normalisation used here differs from the one used in [16], where the same
contraction produced the delta function with a factor 5. This simply corresponds to a
rescaling of d by v/5. In appendix A we derive the useful relation

1 1 )
gaﬁD%NDgQ = 65%51% + 1—86]\]\}5% — ngQRdeR . (5.11)
Using this relation one shows that eq. (5.8) implies
SOMNP — _3pgINgPIMQ (5.12)

Notice that this relation differs from the one in [16] because of the different conventions
used in that paper. In particular in [16] the generators were normalised in such a way that
the first coefficient in eq. (5.11) was equal to 1. Contracting eq. (5.8) with D},? and using
eq. (5.12) one finally gets

3
SaM,NP + §(DCVD5)QMS,3Q7NP =0 . (513)

As we will describe in detail in appendix A, the conditions of egs. (5.9) and (5.13) are the
conditions that the indices aM in S*™NP are in the 351. Indeed, given that the NP
indices are antisymmetric and thus form the 351, the only way of building an invariant
tensor from tensoring this with the product 27 ® 78 is to project this product on the
351. Later in this section we will derive from FEj; the same projection rules for the
embedding tensor.

From the group element

MN ai...ay R M ala M
e@ PRt as BAN 7 gAatagag aRUW29% JAG 0y Ryp ™ pAa i R oo R ) (5.14)

g:

one can compute the Maurer-Cartan form using the fact that the generators commute with
momentum in the massless theory. The complete antisymmetrisation of the indices leads

to the gauge-invariant field-strengths of the massless theory obtained in [13].

We now consider the deformed case. This was analysed in detail in [17], where it was
shown that introducing the Ogievetsky generators and deforming the algebra one obtains
the field strengths of all the fields and dual fields of the gauged maximal five-dimensional
supergravity which had been previously obtained in [16]. We now only concentrate on
the deformed Fy; generators, as we do in all other cases in this paper, which is all one
needs to determine the field strengths of the massive theory. This is completely consistent
if one simply assumes that the indices are antisymmetrised, and indeed the completely
antisymmetric part of the Ogievetsky generators vanishes. As it is clear from the discussion
in section 2, considering only the constraints coming from taking into account the deformed
F11 generators is enough to determine the whole deformed algebra. The following analysis
thus determines all the possible massive deformations of the algebra of eq. (5.5).
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The general analysis of section 2 can be applied to the five-dimensional case making
the identifications

Ral’Ml N RahM @Mla N @M
(0%
RueMe _, guiez W2y — W
Ra1a2a37M3 —, Ru1a2a3,@ WM3M2 N (%\4
Revash  patos WMy, — W (5.15)
MN Ms (4)MNa - :

The Jacobi identity among two 1-forms and momentum gives eq. (2.19), which in this
case is
dMNOWop = 2XMN) (5.16)

where as usual
XMNp, —@MpehN (5.17)

Contracting with dp;nygr one then gets
Wgrp = QdMN[R@yD%]N — dRpNXMNM , (5.18)

where the first term is antisymmetric and the second is symmetric in RP. The Jacobi
identity involving the 1-form, the 2-form and momentum gives eq. (2.16) for n = 2, which is

Wy pd?MQ 4 xMQ — —W(%aDj’\“,M : (5.19)
while the Jacobi identity involving two 2-forms and momentum gives
Waymn = WypD{" — WypD” (5.20)

and the Jacobi identity involving the 1-form, the 3-form and momentum gives

W’Y

(4)NPS£4’NP = @%fﬁa,y — Wg)aD%NM . (5.21)

Substituting W((Zi) MN given in eq. (5.20) in this last equation and contracting o and v gives
2WNnGg Do, p?SMN = — W oD v, (5.22)
and using eq. (5.19), as well as egs. (5.12) and (5.11), one obtains
WyndNP =0 . (5.23)
From eq. (5.19) one can deduce that this implies
XMNy =D NeM —¢o | (5.24)

so that from eq. (5.18) one gets that Wjy must be antisymmetric, that is it belongs to
the 351. This also implies that
Wia =05, (5.25)

,25,



and substituting everything in eq. (5.21) one gets
29,08 — DO = 2D P Wp g, SO (5.26)

where W,y is in the 351. If © was not along the 351 this equation would be inconsistent
because it would imply the invariance of ©® under Eg. Therefore the embedding tensor
has to belong to the 351. To determine this more rigorously, we now show that eq. (5.26)
leads to the projection for © analogous to that in eq. (5.13). Contracting eq. (5.26) with

D%R gives
26 20
5@5 + (D, D)o ef = —WNpsﬁvNP : (5.27)
while contracting it with f,s gives
10
10% + (D, D% ef = EWNpvaNP , (5.28)
and combining these two equations one gets
3
R R
off + §(DVDﬁ)Q 07 =0 . (5.29)

This equation, together with eq. (5.24), projects the embedding tensor on the 351.

The embedding tensor also satisfies quadratic constraints, as discussed in complete
generality in section 2. The Jacobi identity between OM RY, RN and P, gives

ooy, —efx"p=0 | (5.30)
while the Jacobi identity between the 2-form and two momentum operators gives
oMWy =0 . (5.31)

Combining these two conditions one obtains the condition that the embedding tensor is
invariant under the gauge group, which is the subgroup of Eg generated by ©M Re.

To summarise, we have shown that the Jacobi identities constrain the commutators of
the deformed E7; generators and momentum to be

[R*M, B) = —gsp0M RO
[R2 1, Py = —gWMN5I[)alRa2]’N
[R1a203 | P) = —g@M5[alRa2a3]
(R, Py = —2gWiagp Dy T 00 RU29394), (5.32)

From this commutators,as well as the F1; commutators of eq. (5.5), and using the group
element of eq. (5.14), we determine the field strengths of the fields using the general results
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of section 2. The result is

1
Fa1a27M =2 |:a[a1Aa2]7M + _gX][\]jVP]A[ahNAag} gWMNAa1a2:|

M MNP (MN)
Fala2a3 = 3|:8[ Aa2a3] + a[alAa27NAa3} Pd — 2 X A[alagAa?,LN
NP «
+69X1[Q ]dRQMA[al,NAaQ,PAagLQ + QGMAa1a2a3:|
a « 1 M N a P D& N
Fa1 ag 4 |:a[a1Aa2...a4] - Ea[mAamMAG&NAMLPd QDQ - 8[a1Aa2a3A 4],N M

aj...aq

+9D5 " O A, p AL+ 29D Wen ALY,

—gDMPWpNAM AN

[a1az

gD XM Ay p Ay RAG

a3a4] 0304]

o X[MN}dRPSDaQA

24 [al,MAaz,NAag,PAa4LQ . (533)

These are the field-strengths of the five-dimensional gauged maximal supergravity [16].
One can also derive the gauge transformations of the fields from the non-linear realisation.
The result is

§Aam = agnm — gANX N N A p

alaz2 aia2

1
SAM aé‘{@ + ga[ahNAaQ]pd Py gANXNM AP

1
N M MN P
6Agla2a3 = aglagag + a[al MAagag]Dj.\[/v + éa[al,MAGQ,NAGSLPd QD%

_gAM@ﬁ faﬁ a1a2a3

MN _ MN [M N P,MN
5Aa1 ay — a[alA a3a4] + = 9 [ala2Aa3}a4 + (Z[al PAa2a3a4]gaﬁsﬁ
1 M
_a[al,PAaQ,QAag,RAM},SdPQTD%RSBSMNgaﬁ _ Za[al,PAGQ,QA([I?)M]dN]PQ
P[M
—2gApXTIMuANQ (5.34)
where the parameters aq s, aé\/f ap and ag ... are defined in terms of the gauge parame-

ters as

aa M = Oular + gWanAY
Aty = Oy Moy — 9OL Y
as 8[a1A

ajazas

aiaz

o as] = 20Wanp DAY (5.35)

We also compute the field strength of the 4-form up to a term involving the 5-form, the
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Figure 4. The F;; Dynkin diagram corresponding to 6-dimensional supergravity. The internal
symmetry group is SO(5, 5).

result being

FYN =50, ALY+ O A

ai...as as...as]

A, 1 pGBPMN

(e}
as...as*as), ap

aza3 a4a5]

1 o 1 N
—§DQPQS BMN AL o AayQAas) R + 53[@/1[1‘4 AN
1
_ﬂdPRQDaRSSaﬂMNa[al Aag,PAag,QA(m,SAad,T

+2gWroDas@S MV ARS A 1 b golM Az AN

[a1...aq [a1a2a3* asas]

_g@(I;D@PQsﬁR’MNAa Aa4,QAa5},R

[a1a2a3

+%WRQDQ,SQSQRMNAR AS . Agrp

[a1a2* azay

[a1a2

_%WTRdRUSDaSPSaQ,MNAT Aag,UAa4,PAa5]7Q

— %XPQUCZURVD@VSS[;T’MNA[M7PAa2,QAa3,RAa475Aa5LT . (5.36)

In order to compute the complete field strength for the 4-form one should consider the
contribution of the 5-form generators in the deformed algebra.

6 D=6

In this section we consider the six-dimensional case. The symmetry of the massless maximal
supergravity theory in 6 dimensions [25] is SO(5,5), and the bosonic sector of the theory
describes 25 scalars parametrising SO(5,5)/[SO(5) x SO(5)], the metric, a 1-form in the
16 and a 2-form in the 10, whose field strength satisfies a self-duality condition. From FE7q
this theory arises after deleting node 6 in the Fy; Dynkin diagram, as shown in figure 4.
From the diagram it is manifest that the 1-forms belong to the spinor representation.

The positive level Fp; generators with completely antisymmetric spacetime indices
that arise in six dimensions, without considering the 6-forms, are

RMN (45)  R** (16)  R™*M (10)  RM®% (16)
(45)  RM-s Mo (T44) (6.1)

Ra1a2a3a4,MN

where M = 1,...,10 is a vector index of SO(5,5) and o, & = 1,...,16 denote the two
spinor representations of SO(5,5). The scalar generators RMY and the 4-form generators
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R®1a20304,MN are antisymmetric in M N and thus belong to the 45 of SO(5,5). Note that
the 1-form generators belong to the 16 of SO(5,5), which is denoted by the ¢ index, as
they belong to the representation complex conjugate to the one of the vector fields. The
2-forms belong to the 10, the 3-forms belong to the 16 and the 5-forms to the 144.

It is useful to list the conventions for the SO(5,5) Gamma matrices that we are using.
In particular, we are using a Weyl basis, so that the Gamma matrices have the form

0o T B
B M,a
Faa” = <FM,d6 0 > 7 (62)

where A = 1,...,32. They satisfy the Clifford algebra
{Tr, TN} =2nunN (6.3)

where 7y is the Minkowski metric. The charge conjugation matrix is

0 Cob
cAB = ° , 6.4
(Caﬁ 0) 64

which is antisymmetric and unitary, that is

P = —Pe (6.5)
and .
ct 07 =06} cl,efr =61 (6.6)
and satisfies the property
CTyCT =-1%, . (6.7)

In this section we will make use of various Fierz identities, the most relevant being
(CT ) @PTM ) = ¢ (CTa)@TM M) =0 | (6.8)

which is the well-known identity of Gamma matrices in ten dimensions. The 5-form gen-
erators satisfy the constraint

Ral...a5,MaFMad =0 , (69)

which indeed restricts them in the 144 of SO(5,5).
We now analyse the commutation relations. The SO(5,5) algebra is

[RMN RPQ| — yMPRNQ _  NPRMQ |\ NQRMP _ , MQpNP (6.10)
while the commutators of the SO(5,5) generators is

[RMN Ra,d] _ _EFMNBQR‘LB
’ 2

[RMN Rab,P] — UMPRab’N _ ’I’}NPRab’M

[RMN,RabC,a] _ _%I‘MNﬁaR“bcﬁ (6.11)
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and similarly for the higher rank generators. The commutators of the positive level gener-
ators of eq. (6.1) are

[Rahd,Rﬂmﬁ] — (CI‘M)O'ZBROHM,M
[Ral’d7Ra2a3’M] _ I‘\Mao'éRalagag,a

[Ralag,M,Ragml,N] Ral...a4,MN

[Ral,d’Razasm,a] _ i(CFMN)daRal“'M’MN

[Ral,o'c7Ra2...a5,MN] _ F[MadRalma5’N]a

[Ralag,M’Ra?,azLas,a] — _%R‘H---aS,MO‘ . (612)

One can show that all the Jacobi identities are satisfied. From this algebra, one can write
down the group element

g = em'PeAalma5,1VIo¢Ra1 a5 aeAalmazl,]VINRal a4 eAa1a2a3,aRa1a2a3’a

M . pa,6 MN
eAajag mRU2M Ay sRVY GuNR (6.13)

and compute the Maurer-Cartan form. The field strengths of the massless theory are
then obtained antisymmetrising the spacetime indices of the various terms in the Maurer-
Cartan form, and the field equations of the supergravity theory arise as duality relations.
In particular, the field-strength of the vector is dual to the field-strength of the 3-form,
while the field strength of the 4-form is dual to the derivative of the scalars. The 2-forms
satisfy self-duality conditions, while the field strength of the 5-form vanishes in the massless
theory. In deriving the field strengths of the massless theory one takes the positive level E1y
generators to commute with momentum. In the following we will consider the deformation
of the Fq1 algebra which results from modifying the commutation relations of the FEjq
generators with momentum compatibly with the Jacobi identities. As already shown in
other cases these deformations exactly coincide with all the possible massive deformations
of the corresponding supergravity theory.

We thus consider all the consistent deformations of the massless algebra. Restricting
the general analysis of section 2 to the particular case of six dimensions, we write the most
general commutators of the first three positive level Fy; generators with momentum as

(R, By] = —g©“MN Ry
[RUo2M py] = — W0l Reaha
(R0, By = —gWg pyoy Re0hM (6.14)

where © is antisymmetric in M N. It turns out that the Jacobi identities involving these
operators are enough to restrict the representation of © completely and to determine Wy)
and W(3) uniquely in terms of ©. This is what we are showing now. As done already in
other sections for different dimensions, we can assume that the upstairs spacetime indices
are all antisymmetrised when we compute the Jacobi identities. Indeed, the terms which are
not completely antisymmetric are cancelled by deforming the F7; commutation relations
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in terms of Og 1 operators. The details of this mechanism were shown in [17] for various
examples. In this paper we are only interested in the part of the algebra which is relevant
for the determination of the field strengths, and thus we do not need to determine the part
of the deformation which involves the Og generators.

The Jacobi identity between two 1-forms and momentum gives the relation

. 1 .
(CP)QBW(]%;Y = —§FMN,4,Q®5’MN — §FM yﬁ@a MN s (6.15)
while the Jacobi identity between the 1-form, the 2-form and momentum gives

DYawat = 200 MN il (oTN)as (6.16)

®3) 2)3

The antisymmetry of © in M N in the last equation implies

W

G = wlla (6.17)

as can be shown taking the part of eq. (6.16) which is symmetric in M N, and therefore does
not contain ©, and suitably contracting with Gamma matrices. Eq. (6.16) thus becomes

OWMN = _(cTiMysiw il (6.18)

and substituting this back in eq. (6.15) gives
[(CFM)aﬁ5g + §(CTN)56FMN7A,O£ + §(CFN)Q6FMN,A/5]W(]\2/€5 =0 . (6.19)
Using the Fierz identity of eq. (6.8) one can show that this equation implies
Tara Wia =0 (6.20)

This analysis shows that the most general deformation of the algebra is encoded in the
embedding tensor
M M

oM — ~Wia (6.21)
which belongs to the 144. This is exactly the embedding tensor of the maximal supergravity
theory in six dimensions [8], and this analysis shows again, as in any dimension, that the
linear (or representation) constraint of the embedding tensor is completely encoded in the
(deformed) E7; algebra.

One can determine the commutation relation of the 4-form and the 5-form with mo-
mentum requiring that all the Jacobi identities close. The final result is

[R*%, B] = —g(CT")*0} 6] Rary

[Ralag,M P — 'g@Mé[alRag}

b] =
By = gCoveMsl™ Razasl (6.22)
[Ral a4, MN Pb] [Ma@N]é[al Ra2a3a4]70é
]

[Rala2a37

[Ral .a5,Ma Pb _2gcaa@ 6[01 RO as],MN (CI«NP)da@gdé-l[)al Rag...a5],NP
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All the quadratic constraints on the embedding tensor result from the Jacobi identities
involving a positive level F1; generator and two momentum operators, as well as the Jacobi
identities involving a positive level Fq1 generator, the momentum operator and the scalar
operator RMN@%.

It is straightforward to compute the field strengths from the algebra above, using the
general results of section 2 and appendix B. The field strength of the vectors is

Fala%o" =2 |:8[‘11A‘12L g@ Aala? M+ 46 (CPN)BVFMNO‘ [a175Aa2},5:| ) (6'23)
the field strength of the 2-form is
Faiazas, e =3 |:a[ 1 Agzaz, M+ 5 (CPM)aﬁa[ 1 Aaga A, a3 gCaO'é@MdAalagaa,a (6.24)
af 9 3 @b
_g(CFM) ﬁ@gA[alm,NAag},d_{'E(CFMNP)QV(CFN) @(I;A[al ozAa2 gAag},"y:| )
the field strength of the 3-form is
Fal...a4,a =4 [a[al Aag...a4},a - Fi\z/[da[al AGQU«S,MA(MLLd

1 G . .
—E(CFM)aﬁry 100y Aas,6 Ay, jAail s + 2008 0N Aay oy i
+9C7 05 T r.0" Agyazas Aasl.c — 504 10 Alraa, i Aasas] N
+3@Q4 (CTN)STNB AL 00 11 Aay 6 A

a1a2,

a4]75

48 (CFM)ae@N(CI‘MNP)BWF A[al, Aag ﬁAas,’YAa ],5 (625)

and the field strength of the 4-form is

1 .
Fal...a5,MN =5 a[alAag...(ls},MN + Z(CFMN)QCVA[GJ,C'vaaQAagaAas},a (626)

A[alag,[MaagAa4a5} N] + 3 (CFMNP) BA[m,C'vAaQ BgagAa4a5]
1 &
o (CT e B (OT ) A, A, Ay 300 A gy
+29Aa1...a5,[MaCad®N}d + EAal---as,Pa(CrMN)da@dP

(CFMN)daFPBQQA[al, ) Aag...a5],PQ - gcadQ[Md{A[alag,N} Aa3a4a5},a

—~

CFMNP)QB CCW@PA[M CvAag ﬁAa3a4a5] a

(CFMN)aaFPﬁ@ ; A[al dAazas PAa4a5]7Q

OOIQOOIQ l\')lb

4;
Q

(CFMNQ)OCQ(CFQ),Y(S(_‘)PA[GI Q’Aag ﬁAag,’yAa4a5],P

+ﬁ(CI‘MNR) (chpQ)W(ch)eﬂ@QA[al 6Agy 5 Aas 4 A g, §Aas).e
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Using the general results of section 2 that are summarised in appendix B we also determine
the gauge transformations of the fields under which the field strengths above transform

covariantly. The gauge transformation of the 1-form is

0Aga = Qg6 — %(ZMNFMN@BA(I’B , (6.27)
the gauge transformation of the 2-form is
5 Aayap 0l = Gayay. 0l — %(CI‘M)O"BA[%O@MM + 200N Agyay N (6.28)
the gauge transformation of the 3-form is
0Aayazas,a = ayazagia + T Afayas Mg — %(CFM)IB;YFydA[al,o'zAa%Baag},"y
—%QMNFMN@K;AGIQQG&Q : (6.29)
the gauge transformation of the 4-form is
0Aa, . .as, MN = Qay..as, MN — %A[alaQ,[M%gm,N] - i(CPMN)daA[alagag,aaa4],d
_ﬁ(CFMNP)dﬁ(CFP);YSA[al,dAGQ,gAag,%/aa4]75
+%(CP[M)dBA[a1a2,N]Aag,o’zaad,g +dap” Agy . an, PN (6.30)
and the gauge transformation of the 5-form is
0Aa; . as,Ma = Oa; Nay...a5],Ma — %A[alagaa,aam%],M — TN Al au MNCag) 6
—%FQVQA[MQ,MA%M,NG%],a + 2;3!(CFN)B;YngA[alaQ,MAag,dAa47ﬁ'aa5],&
+ﬁ(chNp)5dr§ d(ch)‘*éA[al,dA% 50354, §0as) ¢
_%QNPFNP,aﬁAal...ag,Mﬁ +2ap ™ Aay s Noe (6.31)

where the parameters a are given in terms of the gauge parameters A according to egs. (2.52)

and (2.55), which in the six-dimensional case are

aMN = —gAd(CF[M)dB@N]B
Ao = Oulg + gOL Ay pr
ayay. M = Oy Mg it + 9C““On1aayaz,a
Qajazaz,a = a[alAagagLa - QQFydggAala2a3,MN

ac g Qo
ay..as, MN = Olg; Nagagan, M — (29C 55\/[®N}d + §(CPMN) O5)Nay a4 Pa - (6.32)

One can easily determine also the field strength of the 5-form (up to the term containing

the 6-form potential) using the formulae in appendix B.
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Figure 5. The F;; Dynkin diagram corresponding to 7-dimensional supergravity. The internal
symmetry group is SL(5,R).

7 D=7

The multiplet describing massless maximal supergravity theory in 7 dimensions [26] has a
bosonic sector containing 14 scalars parametrising SL(5,R)/SO(5), the metric, a 1-form in
the 10 and a 2-form in the 5 of SL(5,R). This theory results from FEj; after deletion of
node 7, as shown in the Dynkin diagram of figure 5. One can see from the diagram that

the 1-forms carry two antisymmetric indices of SL(5,R).

The positive-level E1; generators with completely antisymmetric spacetime indices and
up to the 6-form included are

RMN (24) Ra,MN (10) R™M92 (g) Ralazag,M (5) RMa20304, (1 )
Ru-os My (24) R,y p (40)  RO0eMNo(15) (7.1)

where M = 1,...,5. The scalar generators and the 5-forms are in the adjoint of SL(5,R)
and thus satisfy RMj; = R*-+9M, — 0. The 1-form and the 4-form are antisymmetric
in MN. The 6-form R*% yy p is antisymmetric in M N and satisfies R,y p) = 0,
which corresponds to the 40 of SL(5,R). Finally, the 6-form R M ig symmetric in
M N, corresponding to the 15 of SL(5,R).

The scalars generate SL(5,R),
[RMn, R g =68 RM g — 6y RP v, (7.2)
while the commutators of the other generators with the scalars are

2
[RMN,RG’PQ] _ 5ERQ7MQ + 5%RQ,PM _ 35%RQ,PQ

1
[RM N, R%p] = —6M Ry + 35% R%p (7.3)

and similarly for the higher level generators.
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The commutators of the positive level generators in eq. (7.1) are

[Ral,MN,Rag,PQ 6MNPQRRalagB

[Ral,MN’ R%203 5[MR0102037N}

P

= R yN
MNPQRRal...a4

[Rala3M, Ra3a4N

[Ral ,MN, Ra2a3a4,P

]
]
]
] =e QR
[Rasz’Rasaws,N] — R®--a5,N
[Ral,MN’RaQ...aspQ] _ 25[[5\34Ra1...a5,N]Q]
[Ralagag,M’Ra4a5a6,N] — Ral...ae,MN
[Ra1a2MaRa3ma6NP] — Ral .aGNP,M
[Ral’MN,RQQ"'a6’QP] _ GMNQRSRGIMGGRS,P +5¥\4Ra1...a67N}Q ) (74)

To prove that all the Jacobi identities close one makes use of the identity

[M;...Ms5]

My...Ms =
€ €ENy..N;s = 5'5[N1N5]

(7.5)

If one considers the group element

...ag,MN AMN,P N ...a5,M MN
TP Aoy ag MN RGN AL Tag R N P g Aay . ag, Y ROV M Ny JAG T Ry N

g=c

aqagag, M M a1a a,M N M
eAajagag, M RI1I293 eAalaQRM eAaMN R ePMNEY N (7.6)

and compute the Maurer-Cartan form using the fact that the positive level generators
commute with momentum, the field strengths of the massless theory are obtained antisym-
metrising the spacetime indices of the various terms in the Maurer-Cartan form. Requiring
that the field strengths satisfy duality relations, that is the field-strength of the vector is
dual to the field-strength of the 4-form, the field strength of the 2-form is dual to the field
strength of the 3-form and the field strength of the 6-form is dual to the derivative of
the scalars, one recovers the field equations of the massless supergravity theory. We now
consider the deformations of the Fq; algebra resulting from modifying the commutation
relations of the Fq; generators with momentum compatibly with the Jacobi identities. In
this way we will derive all the gauged supergravities in seven dimensions.

Following the results of section 2, the most general deformation that we can write

down is
[Ra,MN’ Pb] — —LC]@MN’PQRQP
(B3, B = —gW Dol B NP
[Ra1a2a3,M’ Pb] _ —QW%’N@[)GI Ragag}N , (77)

where @MN’PQ is antisymmetric in M N and @MNFPp =0, and WE,)NP is antisymmetric
in N P. For simplicity we have only considered the E71; generators up to level 4. Indeed it
turns out that the constraints that the Jacobi identities impose on ©, W) and W3, are
enough to restrict the representations of © uniquely.
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The Jacobi identity involving two 1-forms and the momentum operator gives

1
@PQ,[M[S(;JTV]] + @MN,[P[Sé%} _ §€MNPQRW](%2’?9T ’ (7.8)

which can be solved for W®) in terms of © giving
2
W}(%,?S‘T = enrpQrOT Mg — enrsporOTM (7.9)
The Jacobi identity involving the 1-form, the 2-form and the momentum operator gives

(2) _MNQRS mNg _ _LYonoaw loomaen
We can analyse the solutions of egs. (7.9) and (7.10) for different representations of ©.
If we take @MN’PQ such that G[MN’P}Q =0, then eq. (7.9) implies

Wilvp =0 . (7.11)

Substituting this in eq. (7.10) and using @MN-Fl5 = 0 and @MN-F 5 = 0 one obtains that
W%’N is symmetric in M N. One thus obtains the embedding tensor @MY = W(%/[)N in the
15 of SL(5,R) and we will then show that the inclusion of the forms of rank higher that
3 is also compatible with this deformation. If we instead take @MN.F ¢ to be completely
antisymmetric in M N P, then we can write

@MN.P, = (MNPRSQ . o (7.12)

and the condition @©MN-Pp = 0 implies O, = 0. Therefore the embedding tensor
O, p belongs to the 40 of SL(5,R). Eq. (7.9) then gives

WE?NP =-OnpM (7.13)

and eq. (7.10) gives

M,N
W =0 . (7.14)

Also in this case we will show that one can consistently include in the algebra the higher
rank form generators. We now proceed with the analysis of the algebra and the derivation
of the field strengths and gauge transformations for the two different cases corresponding
to an embedding tensor in the 15 and in the 40. One can show that a linear combination
of these two deformations is not allowed because of the quadratic constraints.

7.1 Embedding tensor in the 15 of SL(5,R)

We now determine the commutation relations or all the generators in eq. (7.1) with the
momentum operator requiring the closure of the Jacobi identities. In the case of the
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embedding tensor OV in the 15 we get

(RMN ] — —g0MIPls RN,
(R, B] =
[Ra1a2a3,M P = g@MN5[a1Ra2a3}
[Rmaz0sas P —
[R71-95:M . Pl = ¢© MP(S[alRag as]
[R* 98y P,Pb] =0
[Ru-a0MN p] — _9g@P(M st gaz-as.N) - (7.15)

From the algebra above one computes the field strengths using the general results of
section 2 and appendix B. The field strength of the vectors is

Fayag, N = 2[00, Ay v + 9079 Ay prrAayion] (7.16)

the field strength of the 2-form is

1
Fé\ldGQGIS =3 [a[alA%%] + §€MNPQR8[G1AG2,NPAG3LQR + QGMNAMGW&N
g
+—@NQ€MPRSTA[G1 ,NPAa27QRAa3},ST s (717)

the field strength of the 3-form is

1
Fal“'a47M =4 |:a[a1Aa2---a4]vM o 8[&1 Aa2a3Aa4],NM - Ea[al Aag,NPAa37QRAa4LSM€SNPQR

g
Ta @NQ GPRSTUA[al ,NPACLQ ,QRAag 7.5"1114(14} UM

(7.18)

_g@NPA[alagag,NAad,PM -

and the field strength of the 4-form is

A[M N

FMN  _ & a[alAMN +EPQRMNA[GLPQ(%QAa3,_.a5]7R [a1as %0340 a5]

ai...as as...as]

1

5" VMN Al poAay 5Das Agl
1 (JUVWR _PQSMN 4
a1€

aj...as [a1ap*tasaaas],P

+— a1,PQAaz, RS Aas, TU Oay As) viv

+g€PQSMN@RTA
- 95' EPQSMNeTUYWR@VXA

[a1 ,PQAaz ,RSAa3a4a5} T

(a1,PQAas, RS Aas TU Aay v Agg) xv | - (7.19)
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These field strengths transform covariantly under the gauge transformations

5Aa,MN = Qg,MN + QQ[MPAGJP‘N]

1
M M MNPQR N
5Aa1a2 = Qgyay — 5 A[al,NPaa2]7QR - Aalaz
1
_ N RST
5Aa1a2a3,M = Gayazas,M T A[alag as],NM + 5 3| @ A[al,MNAaz,QRaa:a],ST

N
+an Aal azaz,N

SAMN  _  MN _l (M aN] _ (MNPQR 4

ay...aq ai..as — 9* aras “azadl [a1a2a3,P%a4],QR

1
TUVWR PQSMN
4' © Alay, PQAas, RS Aay TU A0y vV

N
+ Z EQJ'%‘T[M,&[[G}IG2 Aa3 ,QROay),ST

_ N N PN
5Aa1...a5,M = a[alAag asl,M A[a1a2(13,Maa4a5} 2A[a1 a4 (15]7PM

+5 A[alag AC??,CM Gas]),QM

2
VWXYT RSUPN
+—€ Algr, P Aay, RS Aas, TU Ay VW Cag) xv

51
L s
3' TUVQA{ZIGQAag,QMA(M,STaag,},UV - 20’ [MA(‘lflAgs ’ (720)

where the parameters a are given in terms of the gauge parameters as

ay™ = gAppON
aa MN = OuAyN

gtay = Oy Mgy — 90M N Aayay v
Aayazas, M = Ola; Nagas), M

ahy™N o = 00, AN+ 9O Ny 0y PN (7.21)

ay...aq as...a4

One can easily determine the field strengths and the gauge transformations of the fields
of higher rank using the general results on section 2 which are explicitly expanded in
appendix B.

7.2 Embedding tensor in the 40 of SL(5,R)
In the case of the embedding tensor © sy, p, which belongs to the 40, one gets

[REMN py] — —geMNPQRG L (50 RS
[R192 )y, PBy] = GNPMCS[GIRGQ} NF
[Rmazes M p)
[RO19293% Pyl = —gO MmN, P5[a1Ra2a3a4} P
[Ral...a5,MN’Pb] _ MPQRS@ 5[ lRag...a5]RS
| =

—g@NPQ(S[ 1Ra2 asl,Q, g@NQM(s[ 1 Raz--aslQ
+99PQ,M51[, lRag...ae],QN
[Ral...ae,MN’Pb] =0 . (722)

[RY% viv oy Py
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For this deformation the field strength of the vector is

Foyas,mN = 2[a[a1 Aag},MN - LC]@MN,Pz‘lapla2 + QGPQRTU@TU,[MA[QI,|PQAa2],R\N]] , (7.23)

the field strength of the 2-form is

1
M MNPQR MSTQR AP
Fa1a2a3 =3 [8[(11 azas) + 56 @ 8[@1 AG27NPAa3]7QR - geSTvpe @ A[amQAaBLQR

+%EPQVWR®VW,N€MNSTUA[G1,PQAM,RSAaa},TU , (7.24)

the field strength of the 3-form is

1
Fay.as it = 4|:8[a1Aa2---a4]7M o 8[ Aa2a3Aa4],NM - _a[alAaQ,NPAag,QRAM}7SM€SNPQR
N P
[a1¢12Aa3a4}

+ @ TU,N ETUPQRAN AaavaAaz;],RM

[a1az

+9Onp AN o - 9PM NA

9 NPWXQ@WX ZEUZRSTA[GI

192 ,NPAaz,QRAag,STAMLUM (7.25)

and the field strength of the 4-form is

FMN =5 8[ AMN +€PQRMNA

ai...as as...as]

[al,PQaaQ Aag...ag} - _A[M aagAN] (7'26)

l[araz asas]

+= ePQSMNA[al PQAaz, R0us AL

asas)

1
_{_ZETUVWREPQSMNA[M,PQAGQ,RSAGS’TUﬁm Ags) v

_gEMNPQs@PQ’TAaL“%ST 4 geMNPQT@R&TA[ahPQARS

az...as]
9 6MNPQT@RT GA

R S
2 [a1, PQAOL20L3 Aa4a5}

9 MNPQS TUWXR \%
T @ Owx,v Ay, PQAas, RS Aas, TU Ag, 4]

29 (MNPQS TUDWR XY ABV
o @ OaB,D A, PQAas, RS Aas TU Aay v Aug) xy

The field strengths transform covariantly under the gauge transformations of eq. (7.20)
where the parameters a are given as

an®™ = —gApoe TN O pg 1y

aa,MN = OuAyry + gOprn pAL
- 8[011\%}

NP
aa1a2a3,M - 8[(11 a2a3} M — g@NP,MAa1a2a3

adN . = 0, AVY 4 "MV O G RGNy 0P (7.27)

azazaq)

The field strengths and the gauge transformations of the higher rank fields can also
easily been determined from the above algebra.
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Figure 6. The F;; Dynkin diagram corresponding to 8-dimensional supergravity. The internal
symmetry group is SL(3,R) x SL(2,R).

8 D=8

The bosonic sector of maximal massless eight-dimensional supergravity [27] contains seven
scalars parametrising the manifold SL(3,R)/SO(3) x SL(2,R)/SO(2), the metric, a vector
in the (3,2) of the internal symmetry group SL(3,R) x SL(2,R), a 2-form in (3,1) and an
SL(2,R) doublet of 3-forms which satisfy self-duality conditions. The F1; Dynkin diagram
corresponding to this theory is shown in figure 6.

The positive-level E11 generators with completely antisymmetric spacetime indices and
up to the 6-form included, together with their SL(3,R) x SL(2,R) representations, are

R" (1,3) RMy (8,1) R*Me (3,2) R“%, (3,1) R™%2%% (1,2)
Ra1a2a3a4,M (3 1) Ral...a5,o¢M (§ 2) Ral...ae,i (1 3) Ral...ag,MN (8 1)
R0 (6,2) RUeerMa (3 9y (8.1)
Here the index ¢ = 1,2,3 and o = 1,2 denote the adjoint and the fundamental of SL(2,R)
respectively, while the upstairs index M = 1,2, 3 denotes the fundamental of SL(3,R). The
scalars R’ i = 1,2,3, are the SL(2,R) generators, while the scalars RM y are the SL(3,R)
generators and thus satisfy the constraint RM y; = 0. The 6-form R %M y also satisfies
the constraint R*-M, =0, while the 7-form R %%,y is symmetric in M N.
The algebra of the scalars is
[RMn, R Q] = o§RMg — 65 RN, (8.2)
while the other commutation relations with the scalar generators are
[RZ Ra’Ma] _ D%OéR(LMﬁ
1
[RMNa Ra,Pa] — 6ﬁRa,Ma _ g&%Ra’Pa (83)
and similarly for the higher rank forms. Here DZ;O‘ are the generators of SL(2, R) satisfying
(D', D7]5* = fY), D" (8.4)
and f¥}, are the structure constants of SL(2,R). In terms of Pauli matrices, a choice of
fo‘ is
01 i02 g3

D=2 p,=2%2 p;,=23 .
175 27 79 37 7 (8.5)
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We raise and lower SL(2,R) indices using the antisymmetric metric €%, that is, for a
generic doublet V¢,

Ve = Py Vo =VPes, (8.6)
which implies
ePeg, = -0y . (8.7)
The generators
D"F = i (8.8)

are symmetric in of. Useful identities relating the SL(2,R) generators are
~ 1
DX pind — _Z[e%w + 9P (8.9)

and
DiYDI* + D)DI* = %giﬂ'ag : (8.10)
where g is the SL(2,R) Killing metric.
The non-vanishing commutation relations involving all the non-scalar generators of

eq. (8.1) are

[Ral,Ma’Rag,NB] — EaﬁeMNPRalagp
[Ral,Ma7Ra2a3N]

[Ralag M Ra3a4N]

[Rm ,Ma7 Ra2asa4ﬁ]

5% Ra1 azas3,q

EMNPR¢11G2G3G47P

_ @B parazazaq, M

[Ral,Ma Rag...a5,N EMNPRal...ag,a
)

] = P
[RalagM,Ragmas,a] — Ral...as,aM
Ral,Moz Rag...ae,ﬁN _ eaﬁRal...aG,MN+DQﬁ5MRa1...a6,z
) i N
[RalagM’Rag...as,N] — _Ral...ae,NM

[RO10203,2 Ra4a5a6ﬂ] — PP Rar--aesi
’ Q

[Ral,Ma’ Rag...(w,i]

DéaRal...(n,Mﬁ

[Ral,Ma’Rag...(w,NP] _ §5yRa1...a7,Na _ éégRal...amMa + 6MNQ}%al...cw,oz

PQ
8
[Ra1a2M7Ra3...a7,ozN] — %GMNPRGIM(I?’PO{ o Ral...(n,aMN
[Ra1a2a3,o¢7Ra4a5a6a77M] — _%Ral---a%Ma . (8.11)

One can show that all Jacobi identities are satisfied. This requires the use of the identities
of egs. (8.6)—(8.10), as well as the identities

MMMy v, g = 633 v (8.12)
and
ePe sVIW? = vew? —vhwe (8.13)
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where in the last equation V' and W are two generic SL(2,R) doublets.

The derivation of the field strengths of all the fields and dual fields of massless maximal
supergravity follows exactly the same steps as in the other cases. One considers the group
element

g= ex'PeAal.4.a7,MaR“1‘“a7’Ma o 614%(121%%}% eAa,]MaRa’Mae¢JVINRJMN6¢iRi ’ (8.14)
and computes the Maurer-Cartan form using the fact that in the massless case the positive
level generators commute with momentum. In this way one derives the field strengths of
the massless theory antisymmetrising the spacetime indices of the various terms in the
Maurer-Cartan form. The field equations are then obtained imposing duality conditions
for the various field strengths. We now consider all the consistent deformations of the E1y
algebra resulting from modifying the commutation relations of the FEj; generators with
momentum compatibly with the Jacobi identities. In this way we will derive all the gauged
supergravities in eight dimensions.

The representation of the embedding tensor is contained in the tensor product of the
representation of the 1-form generator and of the scalar generators. In eight dimensions
this leads to

(3,2) ®[(1,3) @ (8,1)] = (3,2) © (3,2) © (3,4) © (6,2) & (15,2) . (8.15)

We now show that only including an embedding tensor in the (6,2) or in one of the two
(3,2) representations leads to a consistent deformation of the algebra.
We first show that the deformations in the (15,2) and in the (3,4) are ruled out. The

first case corresponds to the embedding tensor @gN’a, symmetric in M N and satisfying
the traceless condition @?V/[N’a = 0. We want to write down the commutator

[R*Me P = —g0p M6t R N (8.16)

but the Jacobi identity between R%“Me RbNB and P, shows that this is ruled out because
of symmetry arguments. Analogously, in the (3,4) case we would write

[Ra7Mo¢’ Pb] _ _QGM’aﬁ’YDi,B’yégRi , (817)

where ©M:257 i completely symmetric in 37y, but again the Jacobi identity between
R»Ma RbNB and P, rules this out.
We now consider the two (3,2) deformations. These lead to

[Ra,Ma’ Pb] _ _gég[a@NaRMN + b@MﬁDiﬁaRi] (8.18)

where the parameters a and b are in principle arbitrary, and we now determine the con-
straints on these parameters that come from the Jacobi identities. The Jacobi identity
between R“Me RONG and P, gives

b=—=a |, (8.19)
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and we can fix the parameter a to 1. Therefore, only one of the two (3,2) deformations can
lead to a consistent algebra. In the remaining of this section we show that this deformation
is indeed consistent, and we also show that the embedding tensor in the (6,2) leads to
a consistent deformation. We do this determining the commutation relations of all the
generators in eq. (8.1) with momentum consistently with the Jacobi identities.

8.1 Embedding tensor in the (3,2) of SL(3,R) x SL(2,R)

We first consider the deformation in the (3,2), that is the embedding tensor M. The

result is
8 .
(R0, R = i[O Ry — 50M7D, ]
1
[RalaQM, Pb] = —ggeMNpeaﬁ@Na(leal RaQ]’Pﬁ
[RGIGQG«S,CV’ Pb] _ ggeMaél[)alRagag]M

eveset ) = 2 ot e

3
[Ral”'%’aM,Pb] _ %QEMNPGNaél[)alRGQ...G5]7P
[Ral...ae,z’ Pb] _ _gngﬁ@Ma(Sl[)alR(mmaSLﬁM
1
[Ral...a(;,NM’ Pb] _ —geag[@Na(Sﬂ _ g@Paéj]\\g](Sl[)alRag...ae]ﬁP

8 -8
[Ral...a7,Ma’ Pb] _gggMﬁDiﬂa(S[[,al Rag...a7],l + gg@Na(S[[;al Rag...aﬂ,MN
[Ral...a7,CVMN’ Pb] — O . (820)

From the algebra above as well as the algebra in eq. (8.11) and using the group element of
eq. (8.14) one can compute the field strengths and the gauge transformations of the fields
following the general analysis of section 2. The field strength of the 1-form is

g 59
Fala27Ma =2 |:8[a1Aa2},Moz + gEMNPeaﬁ@NﬂAaPlag - F@NﬁA[aLNaAaQ},Mﬁ

+%@N6A[%MQAQQLNB _ %egAﬁhMAQQLNﬁ , (8.21)

the field strength of the 2-form is

1 29
F(i\fa2a3 =3 |:8[a1A(]l\ga3} + §EOCBEMNPA[G1JVaaaQAag},Pﬁ - ?QMaAalaga&a
g N M g M N
+§® aA[GLNaAagaﬂ - g@ aA[al,NOCAagag]
g
32510 AR, N A paday) 0 (8.22)
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and the field strength of the 3-form is

1
Fal---a4va =4 8[‘11 A‘12a3a4}70¢ + A[alvMaa‘mAM + _EQVEMNPA[CLLMQAaQ,Nﬁaa:aAaﬂ,PV

azas] T 3

) 2
—{—?geaﬁ@MﬁAal ag,M — ?gQMﬁA[GhMaA

azaza4),f

g g
+6®N6A[al7MaAa2,NﬁA(]ga4] — geMﬁA[al,MaAa%NﬁA(]l\gad

79
_m@PJEBWEMNQA[M7MaAa27NﬁA037P’YAa4},Q6 . (8'23)

These field strengths transform covariantly under the gauge transformations

1 .
5Aa,Ma = Gq,Ma t+ aMNAa,Na - _aNNAa,Ma + aiD(Z;yﬁAa,Mﬁ

3
1 1
5A£{a2 = a%az - §EQBEMNPA[G1,NQQOL2LPB - aNMAéXaz + gaNNA%az
1
5Aa1aza3,a = Qgyazaz,a T Af\a{az QAag),Ma — §€MNP€67A[0L1,MaAazNﬁaag},Py
+ainxﬁAa1a2a3ﬂ
1
5Aa1~~~a4,M = a[m Aa2a304},M - §EMNPAme2a53a4} - eaﬁA[amws,aam]ﬁ

1 1
—|—Iea66756NPQA[a1,MaAa2,N5Aa3,P“/Aa4],Q5 — ZeaﬁAglagAa&MO‘aad,Nﬁ

1 1
+Z€aﬁAfZ1a2Aa3,Naaa4},Mﬁ + aMNAal...a4,N - gaNNAal...a4,M 5 (824)

where the parameters a are given in terms of the gauge parameters A as

G’MN = _gAMaeNa
.8 4
a' = ggQMﬁDéﬁAMa
aa,MCv = aaAMa + gEMNpeaﬁAéV@Pﬁ
2
Aoy = O Moy + 590 Nayas 0

alag 3

2
Gaqasas,a = 8[a1Aa2a3},a - ggeaB@MﬁAalagag,M . (825)

Using the formulae given in this paper, the reader can easily determine the field strengths
and gauge transformations for the remaining fields.
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8.2 Embedding tensor in the (6,2) of SL(3,R) x SL(2,R)

The deformation (6,2), corresponding to the embedding tensor ©9,, symmetric in M N,
leads to the commutation relations

[RaMa P] — MNP(_)a 5bRQ
[Ra1a2M, Pb] ge ozﬁ@ 5{[71 Rag],Nﬁ
[Ra1a2a37 b] 0
(R0 M Pl =0
[Ral .as,o M;Pb] g MN(;I[JGIRGQ...asLN
[Re-a0i By] = 0
(RN B = geqe PO, pil RO 10
[Ral a7,Ma P] 0
| =

(RN, By) = 2g P(z\/ﬂ;[alRa2 o, )+g@ﬁ/[NDiﬂa‘sl[yalR@mM]’i - (8.26)

From the algebra above as well as the algebra in eq. (8.11) and using the group element of
eq. (8.14) one can compute the field strengths and the gauge transformations of the fields
corresponding to this deformation. We obtain

g
Fuyasta = 2000 Avs) Mo + 9605y Ante, = 56 2O0u At NoAulps]  (8:27)
for the field strength of the 1-form,
1
Fé‘l/[awa =3 [a[alAtjz\gaB] + §€aﬁ€MNPA[a17NOé8a2 AGSLPﬁ - geMNQQ%QA[ahNGAt];as}
_3' (0B MNT PQR@’Y 1A NaAa,, pﬁA%LQW} (8.28)

for the field strength of the 2-form,

1
F“1~~~a470‘ =4 [a[al Aa2a3a4} + A[al Maaa? Aasad _EBWEMNPA[OLLMaAm,Nﬁaa:& Aa4LP“f

3!
g 8 M 9 MNQgB P
+_Ea5@MNA[a1a2Aa3a4} - 56 QQPQA[al,MaAa27NﬁAa3a4]
Z MNT B'YEPQR(—) TA[al,MaAaz,NﬁAaa,P’\/Aa4],Q5:| (829)

for the field strength of the 3-form. These field strengths transform covariantly under the
gauge transformations determined from eq. (8.24) once one expresses the parameters a in
terms of the gauge parameters as

ap™ = ge"O8pAga
at =0
g, Mo = OaApa — geaﬁ@é\ZNAéV
acjz\/{ag = 8[(“1\2/2[}
Qayazaz,a = Oy Nasazla (8.30)

Also for this deformation one can determine the field strengths and the gauge trans-
formations of the higher rank fields using the formulae in section 2 and appendix B.
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Figure 7. The F1; Dynkin diagram corresponding to 9-dimensional supergravity. The non-abelian
part of the internal symmetry group is SL(2,R).

9 D=9

The three scalars of maximal massless nine-dimensional supergravity parametrise the man-
ifold RT x SL(2,R)/SO(2). The theory also contains the metric, a doublet and a singlet
of vectors, a doublet of 2-forms and a 3-form. The decomposition of F7; appropriate to
the nine-dimensional theory is shown in figure 7. The form generators of rank less that
8 that result are associated to the fields of the supergravity theory and their duals. The
FE4q algebra also contains 8 and 9 forms, as well as generators with mixed symmetry. The
generators with completely antisymmetric indices, not including the 9-forms, are

R RZ Ra Ra,a Ralag,a Ra1a2a3 Ra1a2a3a4 Ral...as,a

Ral...ae Ral...a6,a Ral...a7 Ra1...a7,i Ral...ag,a Ral...ag,i

: (9.1)

where the SL(2,R) conventions are as in the previous section.
We now list all the non-vanishing commutators involving the operators in eq. (9.1).
The scalars satisfy

[R',R'] = f7,.R" (9.2)
while all the commutators producing the 1-forms are
[R,R"] = —R" [R, R"*] = R"®
[R', R*%] = D}*R*® . (9.3)
The 2-form occurs in
(R, R"%:%] = D}~ R [R, R™°] = —R™* | (9.4)
the 3-form in
R, R#10203] — Ra1azas [Rove Re20s,0] — (of paieas (9.5)
and the 4-form in
[Ru102. Rasas,f] — (o parazasas [R%1, R20304) — _ Ra1azasas (9.6)

The 5-form results from the commutators

[R, Ra1...a5704] _ Ral...a5,oz [Ri,Ral...a57Oé] _ D%OéRal...ag,,ﬁ
[Ral’a,RCLQ"'as] — RO1--05,x [Ra1a27a7Ra3a4a5] — RO1--a5,x ’ (97)
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the 6-forms from the commutators

[R, Ral...ae] _ 2Ra1...a6 [Ri,Ral"'aG’a] _ DéaRal"'aﬁ’B
[Ral,a’Rag...aG,ﬁ] _ eaﬁRal...ae [Ralagaija4a5a6] — RO1--06
[Ral’Rag...a(;,a] — _Ral...ae,a [Ralag,a’Rag...aa] — Ral...ae,a (98)

and the 7-forms from the commutators

[R, Ra1...a7] — RA1i--a7 [R, Ra1...a7,i] N
[Ri7Ra1...a7,j] — fiijm...m,k [Ral,RGQ"'(W] _ Ra1.-a7

[R*1 Raz---a%ﬁ] — D?ﬁRal---a%i + §€aﬁRalma7
’ 4

[Ralag,a Rag...a7,6] :DiOéﬁRal...(n,i N lea,@Ral...(w
’ 4

[Ralagag,’ Ra4a5a6a7] — %Ral---cw . (99)

Finally, the commutators giving rise to the 8-forms are

[ Ral .ag,o ] a1...a8,oz [Ri,Ral...ag, ] Dz aRal .ag,l3
[RZ R--as, ]] ij RM- .ag,k [Ral,Rag...ag,l] RM- .ag,i
[Ral, Ra2 ag] Ral .ag,o [Raha, Rag...as,z] 3DZ OéRal .ag,(3
[R*192:% R4 as,ﬁ] DOéﬁRal .ag,i [R#102: R4s-+08] = _ RA1--a8,
[Ralagag,Rag...ag,a] — _§Ra1...a8,a ] (910)

One can check that all Jacobi identities are satisfied.

The algebra of egs. (9.2)—(9.10) determines the fields strengths of all the forms of
massless maximal supergravity in nine-dimensions, with the exception of the 9-forms that
require the taking into account the 9-form generators. The Maurer-Cartan form that results

from the group element

g = v Pefaraga88 % eAaran o B2 (Ao o R (AR (6iR! (OR (9.11)
produces indeed these field-strengths once all the spacetime indices are antisymmetrised.
In this derivation of the massless theory, one imposes that all the generators in eq. (9.1)
commute with momentum. We now show that, exactly as in all the other cases discussed
in this paper, the field strengths of all the fields of the gauged maximal supergravities in
nine dimensions result from a deformed algebra, called E’ﬂ‘fgl, in which the generators in
eq. (9.1) have non-trivial commutation relations with the momentum operator compatibly
with the Jacobi identities.

As usual, from the Eq1 perspective the commutator of the 1-form generators with mo-
mentum give rise to the scalar generators contracted with the embedding tensor. There-
fore, in this nine-dimensional case the embedding tensor in contained in the SL(2,R)

tensor product
1e2)(1e3)=493020201 . (9.12)
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The singlet © would correspond to the commutator
[R*, Py)] = —gO, R, (9.13)

which is ruled out because of the Jacobi identity involving R?®, R’ and P.. Similarly, the
quadruplet @77 would lead to the commutator

[R*, Py) = —g©*"'D; 5. 60 R, (9.14)

which is ruled out because of the Jacobi identity involving R*®, RY® and P,. The two
doublet deformations lead to the commutator

R, Py] = —g03[a®°R + b0°D; s°R’] | (9.15)
and the Jacobi identities impose the condition
b=—4a . (9.16)

This leads to one possible doublet deformation, and we fix the parameter a to 1. To
summarise, the only representations of the embedding tensor which are not ruled out are
the triplet and one of the two doublets. We now show that both these embedding tensors
lead to a consistent algebra. In [28] all the possible gauged maximal supergravities in nine
dimensions were constructed. They indeed correspond to an embedding tensor in either
the triplet or the doublet of SL(2,R).

9.1 Embedding tensor in the 3 of SL(2,R)

We first consider the deformation in the triplet, which corresponds to the embedding tensor
©;. This case as been considered in [17] up to the 5-forms. In that paper the deformation
parameter was denoted with m;, and our conventions here are such that m; = —g©;.
Deforming from the commutator of R® with momentum, all the other commutators are
determined by requiring that the Jacobi identities close. The final result is

(R, P,
(R, B,
(R By
[Reeas p,
(Ro- P,
[R5 P,

] = —gotO,R!
]
By
]
]
]
(R, By
By
]
By
]
]

0; D} 5" R}

[Ral...ae, ) I[yal Rag...as},,@

[Ral .ay Pb
[Ral...(m, A
[Ral .ag,x Pb
[Ral .ag,t Pb

OQGOOOQG

—gOi6," Roz-wa]

_g@ 5[a1 Ra2 ag] gfljkgj(sl[)al RGQ---GSLk . (917)
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From these commutation relations and the massless algebra of egs. (9.2)—(9.10), using the
group element in eq. (9.11), one determines the field strengths and the gauge transforma-
tions on the fields. The field strengths of the 1-forms are

Foyay = 201q, Agy)
F01042704 = 2[a[a1Aa2},a - g@iDgﬁAawmﬁ] ) (9'18)
the field-strength of the 2-form is
Falagag,a = 3[a[a1 Aagag},a - A[al 8a2 Aag],a + g@iDéﬁA[al Aagag]ﬁ] ) (919)
the field strength of the 3-form is
« 9 ~i o
Fuy.cas = Al0ja Avg..an) + € Aja, O Ausan 5 + 59D ApyazaAasa ol - (9:20)

the field strength of the 4-form is

1
Fal...a5 =5 |:8[a1Aa2...a5] - A[a1aa2Aa3a4a5] A[alam7 8 Aa4a5} B

g .
_EaﬁA[alAamaaasAawﬂﬂ N §®ZD?6A[a1Aa2a37ozAa4a5},/3 (9.21)
and the field strength of the 5-from is

Fal...as,oz =0 |:8[a1 Aag...as} + A[al aa Aag...as} - A[alag,aaaaAa4a5a6]

asag),y

1 g
_566'714[0”,aAGQGS,ﬁa(MA%aG]W — igzDiﬁyA[alaz,aAasm,ﬁA
—90iD," Agy a0 8| - (9.22)

These field strengths transform covariantly under the gauge transformations
0A, = a, — aA,
0Aga = g0 — aAg o + aiDgﬁAaﬁ
0Au 40,0 = Gajas,a + A[ahaaaﬂ + aiDgﬁAalmﬂ

1
5Aa1a2a3 = Qaqazas — EaﬁA[alag,aaag]ﬂ + §€aﬁA[a17aAa2,ﬁaa3] + aAalams

1

1
5Aa1---a4 = Qay...aqy — §EaﬁA[a1a2,aa0304]ﬁ + A[a1a2a3aa4] + 560{614[“1“270’4@375(1%}

1
5Aa1...a5,a = Qqy...a5,0 + A[alagag aqas],o + A[a1...a4aa5],a - 5667A[alaz,aAasm,ﬁacw]ﬁf

1 .
+56[%{’4[@@,aAas,ﬁAMﬂ/a%] + aAq;. as,a + aiDézﬁAal---%ﬁ

1
514@1...(16 = 8[a1Aa2...a6] - §A[a1a2a3aa4a5a6] + EaﬁA[aL..ag,aaaG},ﬁ

1 1
—§€aﬁA[a1a2a3Aa4a5,aaa6},/3 + ZA[GIG2GS Aay,aAas ,B%ag) + 20Aa; ...ag

1
5Aa1...a5,a = a[alAag...as],a + A[al...a4aa5a6},a - iEﬁ,yA[alag,aAa3a4,ﬁa’a5a6],’y + A[al...ag,aa’ae]

1 .
__eﬁA/A[alaQ,aAa3a4,ﬁAa5ﬂ/aae] + aiDtlxﬁAal---acs,ﬁ ’ (9.23)
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where the parameters a are given in terms of the gauge parameters A as

a=20
al = —gA©"
aq, = O, A

Gae = Oala + 90D PN, 5
Qayaz,a = Opa; Mgl
Qayazas = Oja, A
Qay..as = O, A
Qa;...a5,0 = B[MA

azas)
aza3a4]

+ 90D PNy anp - (9.24)

as...as],a

The reader can easily evaluate the remaining field strengths and gauge transformations.

9.2 Embedding tensor in the 2 of SL(2,R)

We now consider the doublet deformation, corresponding to the embedding tensor ©%. We
start from the commutator between the 1-form and momentum as in eq. (9.15) with the
parameters as in eq. (9.16) with a = 1. Imposing the closure of the Jacobi identities gives

[R*, B] =
[RY, Py = —gé“[@o‘R 40°D; 5 R

[R1%29 P] = g©%5)" R

[R419203 P — —ge, 5@ Ro203)5

[RU-44, By] = 0
[R5, ] = 0

[RU96, Py) = —2ge,0° 81" B2 0l0
(R0 B) = 0

[R4197 Py = —2ge g0 81" Ro2-07)

[RO1-974, B = —2g©° D 561 Ro2+-07)1
[R1-+as@ Py = 599%}?3@---%1 — 2gD; 57075, Roz-as)i
[R5 Bl =0 . (9.25)

From these commutation relations and the massless algebra of egs. (9.2)—(9.10), using the
group element in eq. (9.11), one determines the field strengths and the gauge transforma-
tions on the fields. The field strengths of the 1-forms are

Falag = 2[a[a1 Aag} - g@aAalag,a + QGQA[al Aag],a]

g
Farasa = 2|0a Aasla — 99° Apay 0 Aus s — 5(9&/15 Aus| (9.26)

1 [al
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the field-strength of the 2-form is
Fayazasa = 3 [5[a114a2a3],a — Ay Oay Agg).a — 9€0pO” Aayagas + 907 Afay 0 Aazag) 5
+90° A, Ay o Aa) 5 + g@aA[alAEQA%m] , (9.27)
the field strength of the 3-form is
Fo s = 4| O Aun + APy A1 90" At A
_g@a AL IAGQ,ﬁAamW] : (9.28)

the field strength of the 4-form is

1 «
Fal...ag =5 |:8[a1Aa2...a5} - A[alaazAagmlas} - 56 ﬁA[alag,aaagAa4a5],6

_eaﬁA[al AaQ,aaagAa4a5],B - geaA[alag,aAa3a4a5}

(7 g (07
—90% Ay, Aay,aAazasas) — 9¢ ﬁeyA[alAa2,aAa3,6Aa4a5},v (9:29)
and the field strength of the 5-from is
Fal---a(s,oé =6 a[m Aag...ae],a + A[al,aaazAag...ae] - A[alag,aaagAmlasas}
1
_566’\/’4[@,aAa2a3,63a4Aa5a5},'y - 29604,8@614(11...(16
—90° Ay, 0 Ausas BAusasas]| - (9.30)

These field strengths transform covariantly under the gauge transformations in eq. (9.23),
with the parameters a given in terms of the gauge parameters A as

a = —gO%A,
at = 4g@ﬁDéO‘Aa
aq = O\ + gO% Ay
a0 = Oula
Garaza = Oay Nag).or + 960307 Naya

Qayazas = 8[a1Aa2a3]
Aay...a4 = a[alAagagad
Qay...a5,00 = 8[a1Aa2...a5},a + 2g€aB®ﬁAa1...a5 . (9'31)

The reader can easily evaluate the remaining field strengths and gauge transformations

corresponding to this deformation.
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D G 1-forms | 2-forms | 3-forms | 4-forms | 5-forms | 6-forms | 7-forms | 8-forms | 9-forms | 10-forms
+ 1
10A R 1 1 1 1 1 1 1 1 1
4
10B SL(2,R) 2 1 2 3 5
2 2 3 3 4
9 SL(2,R) x Rt 2 1 1 2 2
1 1 1 2 2
(15,1)
3 3 8,1) (8,2) (3,3)
8 | SL(3,R) x SL(2,R) | (3,2 3,1 1,2 3,1 3,2) | ¢ 6
GRxsLe® | @2 | 6y | a2 | Gy | ey | T D | &
(38,1)
40 70
7 SL(5,R) 10 5 5 10 24 45
i5 5
320
6 SO(5,5) 16 10 16 45 144 126
10
i 1728
5 E6(+G) 27 27 78 351 o7
8645
4 E7(+7) 56 133 912 133
3875 147250
3 Bs(+8) 248 3875
1 248

Table 1. Table giving the representations of the symmetry group G of all the forms fields of
maximal supergravities in any dimension [13]. The 3-forms in three dimensions were determined
in [14]. It is important to observe that these are the representations of the fields, which are the
contragredient of the representations of the corresponding generators, which have been considered
in this paper.

10 Form field equations and duality conditions

In this section we write down the equations of motion for the form fields taking into account
that we have fields and their duals. Such equations have been studied on an ad-hoc basis
previously beginning with [29]. However, our discussions will be in the context of E1; and
in particular the representations and hierarchy of form fields it predicts [13] and as is given
in the table of [13] that is table 1 of this paper.

If we assume that the form field equations are first order in space-time derivatives
they can only be duality relations between the field strengths obtained in this paper. Let
us first consider gauge fields whose field strengths have a rank that is not half that of
the dimensions of space-time, that is those that do not obey some kind of generalised self
duality condition. Examining the table 1 of the representations of G of the form fields we
find that for every gauge field of rank n for n < %D, with a field strength F,; of rank
n + 1, that belongs to a representation R,, there is a dual gauge field of rank D —n — 2
with a field strength Fp_,,_1 of rank D — n — 1 which is in that representation Rp_,_2
which turns out to be the conjugate representation, i.e. Rp_n_2 = Ry. The field strengths
that occur in the Cartan forms transform under G with a non-linear action that is only a

,52,



transformation under the Cartan involution invariant subgroup I(G) rather than the above
mentioned linear representations of G. This is due to the scalar factors mentioned above
which convert the linear representation into the non-linear representation in the well know
manner. Thus demanding invariant field equations reduces to finding those invariant under
only I(G) transformations. Examining all such gauge fields for D < 7, we find that under
the decomposition of their representations of G from G to I(G) we find one irreducible
real representation of I(G). Hence the gauge fields and their duals belong to the same
representation of I(G). For example in seven dimensions the two forms belong to the 5 of
SL(5,R) while their dual gauge fields, the three forms, belong to the 5 of SL(5,R). The
Cartan involution invariant subgroup is I(SL(5,R)) = SO(5) and these two gauge fields
both belong to the real 5 representation of this group.

The field equations for all such gauge fields can only be of the form
Fn+1 = *FD—n—l 5 (101)

where * is the space-time dual, since they each belong to the same irreducible representation
of I(G). For dimensions D > 8 the gauge fields belong to representations of G that
decompose into at most two distinct irreducible real representations of I(G) and their
dual gauge fields belong to precisely the same representations of I(G). Then the duality
condition consists of as many equations as there are representations of I(G), which are of
the form of eq. (10.1) and they relate the gauge field and its dual in the same representation
of I(G).

The scalars are a non-linear realisation of G and obey duality relations with the rank
D — 2 forms which are in the adjoint representation. Under the decomposition from G to
I(G) the adjoint representation of the latter breaks into the adjoint of I(G) and the “coset”
part. Only the latter enters into the duality condition with the coset part of the Cartan
form formed from the scalars. The scalar equation results from the curl of these duality
relations. Such curl reproduces the field strengths of the D — 1 form fields, which are dual
to the embedding tensor, and this gives rise to the scalar potential. In general there is more
than one gauge covariant quantity that one can construct contracting the scalars with the
embedding tensor, and the method we have presented in this paper of determining all the
gauge covariant quantities of the theory does not determine their relative coefficient, and
therefore does not determine the exact form of the scalar potential.

For odd dimensions space-times there are clearly no generalised self duality conditions.
However, the cases when D = 4m and D = 4m + 2, for integer m are different due to the
fact that xx = —1 and xx = +1 respectively when acting on a %—form. Let us begin with
the latter case, that is dimensions ten and six. As is well known in ten dimensions we have
a four form gauge field that is a singlet of SL(2,R) and obeys a self duality condition of
the form F5 = xF5. In six dimensions that two forms belong to the 10 of SO(5,5) which
decomposes into the reducible representation (5,1) @ (1,5) of SO(5)®SO(5) = I(SO(5,5)).
The duality condition which is invariant under the SO(5) ® SO(5) transformations of the
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field strength can only be of the form

F. F
<£>:*<_%> : (10.2)

where F3 and Fj belong to the (5, 1) and (1, 5) representations of SO(5)®SO(5) respectively.
The minus sign is required as there must be the same number of self-dual and anti-self-dual
forms as the resulting theory describes 5 tensors that do not satisfy self-duality conditions.

Let us now consider the case of D = 4m + 2 that is dimensions eight and four. In this
case the forms belong to an irreducible representation of G that breaks into two irreducible
representations of I(G) which are related by complex conjugation. In eight dimensions the
three forms belong to the (1,2) representation of SL(3,R) ® SL(2,R) which breaks into
(1,17) and (1,17) representations of I(SL(3,R) ® SL(2,R)) = SO(3) ® SO(2). As such

the unique invariant field equation is of the form

<%>:¢*<f%> , (10.3)

where Fj and F} belong to the (1,17) and (1,17) representations of SO(3) ® SO(2). The i
found in this equation is due to the fact that xx = —1 in this dimension and the minus sign
then results from the consistency with respect to complex conjugation. In four dimensions
the one forms belong to the 56 dimensional representation of E7 which decompose into
the 28 @ 28 of representations I(E7) = SU(8). The self duality condition can only be of

the form
FE —i% Fé* : (10.4)
F2 - F2

where I, and Fy are the 28 & 28 representations of SU(8).

These equations of motion are the correct equations although we have not derived these
duality relations as following from Fyy in this paper. This remains a future project. There
is a certain freedom to rescale the form fields by constants which is reflected that these
duality relations can have constants that are not explicitly shown above. These constants
are fixed once one also writes down the field equation for gravity as this involves the stress
tensor. It is impressive to see the way the representations of the form fields, dictated by
F11, cooperate with the demands that the form field equations be duality conditions.

The duality relations discussed in this section have a crucial role in determining the
closure of the supersymmetry algebra. Indeed, these relations are first order in derivatives,
and the closure of the supersymmetry algebra on fields and dual fields, as well as on D — 1
and D forms, only occurs provided that they are satisfied. In [30] and [31] it was shown that
the supersymmetry algebra of IIB and ITA respectively close on all the fields and dual fields
provided that the duality relations are satisfied. The supersymmetry algebra also fixes the
D — 1 and D forms that one can include, the result being exactly in agreement with the
predictions of Ey; [12] (subsequently, it was shown in [32] that also the detailed coefficients
of the gauge algebra of the IIB theory are reproduced by E71). In particular the ITA algebra
describes both the massive and massless field equations, as the field strength of the 9-form
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can be set equal to the Romans cosmological constant [33] or to zero respectively. More
recently, the closure of the supersymmetry algebra on higher rank forms was shown for the
case of gauged maximal supergravities in five dimensions [16] and in three dimensions [34].

11 Conclusions

It was previously found [13, 14] that the maximal gauged supergravity theories were clas-
sified by F11. In particular the forms of rank D — 1 in the D dimensional supergravity
theory, which lead to a cosmological constants, are in the contragredient representation
of the internal symmetry group of the tensor which was known to label all such theories.
Although this discovery was kinematical in nature it demonstrated that Eq; provided, for
the first time, a unifying scheme within which to consider all such theories. In this paper
we show that E71, by the steps described in this paper, leads to all the field strengths of
the maximal gauged supergravity theories. The embedding tensor arises as the tensor that
uniquely determines the deformation of the Fy; algebra from which the gauged supergrav-
ities arise as non-linear realisations and we show that it is in the same representation as
the D —1 form generators. We have analysed each dimension from three to nine, and these
results, together with the ten-dimensional deformation corresponding to the Romans the-
ory analysed in [17], give the field strengths of all possible massive maximal supergravities
in any dimension.

If one assumes, as is the case, that the dynamics of the form fields are first order in
space-time derivatives then they must be given by duality relations on the field strengths
calculated in this paper. As a result, for all the fields apart from the scalars, the dynamics
of the bosonic sector is then determined up to a few constants that multiply the field
strengths. In the absence of the gravity equation that contains the stress tensor one can
fix these constants by field redefinitions, hence in this sense the dynamics is determined
in the absence of gravity (in the case of the scalar equation in general there is more
than one gauge covariant quantity that one can construct contracting the scalars with
the embedding tensor, and the procedure presented in this paper does not determine their
relative coefficient, and therefore does not determine the exact form of the scalar potential).
Thus most results on the maximal gauged supergravity theories, including those that have
been derived over many years, can be found in a very quick, efficient and unified manner
from Fq;.

In the Fy; formulation of the maximal gauged supergravities theories the field content
in a given dimension is the same although the actual physical degree of freedom in any
given gauged supergravity theory may differ. In particular the number of D — 1 forms is
the same and so a given maximal gauged supergravity theory has a knowledge of all the
other possible gauged supergravity theories in the same dimension. This is analogous to
having various different theories and then discovering that there is a potential from which
they can all be derived as different minima.

In this paper we have used a deformation of an algebra Eq; containing the Eyq algebra,
the usual space-time translation and the Ogievetsky generators. However, in reference [17]
a detailed study of the nine dimensional gauged supergravities was carried out and it was
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found that these theories arose from the full E%"l‘:‘flo g including the parts associated with
ten dimensions. However, these gauged supergravities could be constructed from only a
subalgebra of Eﬁfgl which appeared to be a deformed Eﬁfgl algebra as a result of the
complicated field redefinitions of the generators and the generators that were dropped as
they played no role in the dynamics. As such in these theories one is dealing with a
subalgebra of Eﬁcgl which only appears as a deformation as a consequence of the way the

calculation is carried out. It would be of interest to see if this is a general phenomenon.

As discussed in the introduction, the original gauged supergravities were derived by
adding a deformations to the massless theory and using supersymmetry to find the com-
plete the theory. In such an approach one did not use fields that were in representations
of the internal symmetry group G. Later gauged maximal supergravities were constructed
using fields that were representations of G, but the theory also contained an embedding
tensor that labelled the theories and broke the internal symmetry group G. In this way of
proceeding the fields always occurred together with this tensor in just such a way that the
full G representations of the fields was not present into the equations of motion. However,
in the last few years the bosonic sector of certain gauged supergravities have been con-
structed [35] by taking the physical degrees of freedom to be described by fields that are
representations of the internal symmetry and demanding that these unconstrained fields
carry a gauge algebra extending the gauging of part of the local internal symmetry. In
carrying out this programme these authors have found a hierarchy of fields of increasing
rank [34]. However, these are just those found previously in the Fy; approach [13]. It is
obvious that this procedure is just a bottom up way of discovering the form sector of Eqq
and it is not necessary to speculate about the mysterious degrees of freedom of M theory
that such a process may have uncovered.

While there can be no doubt of the calculational efficiency of the approach of this paper
it leaves open a number of more conceptual questions. For example, what mathematical
object do the Ogievetsky generators belong to. Also even though one uses only the positive
and zero level part of the F71 algebra in the deformed algebra, this algebra is only defined
from the full £y, algebra. As a result many properties of, and deductions from, the full £y
algebra are imported into the calculation. This would at best seem unnatural. In a previous
paper it was proposed to derive the gauged supergravity theories, and explicitly the five
dimensional gauged supergravities, from a non-linear realisation of F11 ®,[; where [y is the
fundamental representation associated to the first node of Fq; and leads to a generalised
space-time. This approach has the advantage that it is conceptually well defined from
the mathematical viewpoint, but it is less clear how some of the physical aspects of the
gauged supergravity theories emerge in a natural way. These include how the local gauge
transformations arise and how the slice of generalised space-time that is active arises from
the full generalised space-time. Thus one has a dilemma how to include space-time, local
gauge transformations within Fqq. In this context we might mention the interesting work
of reference [36] that concerns the role of diffeomorphism symmetries in the context of the
non-linear realisation relevant to supergravity theories. We hope to report elsewhere on
progress in this area.
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A Group theory conventions and projectors

In this appendix we first review some of the group-theoretic techniques that have been used
in this paper, and we then discuss the F; derivation of various representation projectors,
fucusing in particular on the cases of E7 and Eg which have been discussed in sections
4 and 5. These projectors arise in Fj; as conditions on the structure constants that
contract the D —1 form generators, and the fact that the consistency of the algebra imposes
that the embedding tensor must satisfy the same projection conditions proves that the
embedding tensor and the D — 1-form generators must belong to the same representation.
At the end of this appendix we then show that these projectors are precisely the ones that
result from a purely group theoretic analysis based on the representations of the internal
symmetry group.
The Cartan-Killing metric *? is defined as

CAdj"faﬁ = fcwefﬁgﬂ/ 5 (Al)

where Cjpgqj is the quadratic Casimir in the adjoint representation. Denoting with D the
fundamental representation, one then defines the quadratic Casimir in the fundamental

representation Cy from the relation
CA6Yr = kapD§ T DEN (A.2)

When not otherwise specified in the paper, we use to raise and lower indices in the adjoint
representation the metric

¢*% = Te(D*DP) = DY, NDEM (A.3)

where the trace is in the fundamental, i.e. lowest dimensional, representation. This metric
differs from the Cartan-Killing metric of eq. (A.1) by a constant, and indeed from eq. (A.2)
one finds

d
B — B A4

where d is the dimension of the adjoint and dp is the dimension of the fundamental repre-

sentation. Substituting the inverse of eq. (A.4) in eq. (A.2) one also derives

o d
905 D3 "DpN = o, (A.5)
A
while substituting it in eq. (A.1) one gets
d Chag;
afy — @ YAdigy A6
7 faps di Oy (A.6)
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as follows from raising the indices using the metric in eq. (A.3). The ratio Cc‘?fj is given by

the relation o P
Ay _ZAT (A7)
CA d I A

where ¢V is the dual Coxeter number and I, is the Dynkin index of the fundamental

representation.

In this paper we have shown that the deformed FEj; algebras resulting from suitably
modifying the commutation relations of the E1; generators with momentum are entirely
classified by the tensor ©1 arising in eq. (2.13), where M; denotes the representation of
the 1-form Fj; generator R™M1 in a given dimension. As we have shown, this tensor is
identified with the embedding tensor. Denoting with R; this representation, and with Rg
the adjoint, the embedding tensor is contained in the tensor product Ry ® Rg. Since the
D — 2-form generators also belong to the adjoint, that is Rp_2 = Ry, this tensor product
is the same as the tensor product Rq ® Rp_2, which occurs in the commutator between
the 1-form and the D — 2-form. This commutator gives rise to the D — 1-forms, that
belong to a representation Rp_; inside R; ® Rp_2. However, Ry ® Rp_2 contains at
least three irreducible representations, and the E7; derivation of the projection conditions
on Rp_1 plays an important role in this paper. In particular, it is responsible for the
demonstration that the D — 1-form generators and the embedding tensor belong to the
same representation. This was proven in detail for any dimension in this paper.

In table 2 we list all the irreducible representations arising in the tensor product
R;1 ® Ry in any dimension, underlying the ones to which the embedding tensor and the
D — 1 forms actually belong. As can be noticed from the table, in four, five and six
dimensions Ry ® Rg generates three representations. These cases are those in which the 1-
form generator belongs to the fundamental representation Da. Therefore, in four, five and
six dimensions the embedding tensor @1 is contained in the tensor product D ® Rg. In
the following we will in general denote the adjoint representation by Adj. It is a property of
any simple group with the exception of Fg that the tensor product Dp ® Adj always gives

DA®Adj=Dpe Dy ® Dy | (A.8)

where D1 and Do are two other representations, and we take the dimension of Di to
be lower than the dimension of Ds. As can be seen from the table, in four, five and
six dimensions the embedding tensor belongs to Dy. Using the fact that this is also the
representation of the D — 1-form, we now show that one can derive from E1; the projectors
on these three representations. We will focus in particular on the cases of E7 and FEg,
corresponding to four and five dimensions respectively.
Given the tensor product Do ® Adj, the projectors Pp,, Pp, and Pp, on the repre-

sentations of eq. (A.8) can be constructed in terms of §3/, 05 and D$N as [3]

Po e = D D

Pp, M7 = 4D PDop™ + Doy DEM + 53 67

d
PDJ%::_<a+—ﬁ)DgPDMJL—M%NPDﬁM+%1—cﬁ%&z, (A.9)
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D G R1 ® Ro

9 SL(2,R) 102020304

8 | SL(3,R) x SL(2,R) | (3,2) & (3,2) ®(3,4) & (6,2) ® (15,2)
7 SL(5,R) 100 15©40® 175

6 SO(5,5) 16 @ 144 @ 560

5 Eg (1) 27 & 351 ¢ 1728

4 Eq(in) 56 & 912 & 6480

3 Es(1s) 1 & 248 @ 3875 & 27000 ¢ 30380

Table 2. Table giving the irreducible representations that arise in the product R; ® Ry in various
dimensions. The representations to which the embedding tensor and the D — 1-form generators
belong are underlined.

where one makes use of eq. (A.5) and the fact that the sum of the projectors is the identity.
Note that the three coefficients a, b and ¢ are not specified and will be given later. We
require the projectors to satisfy

M N M M N
PDAC&]\?PDAQIZ = IP>DAod:7 IP)DAod\[/sIP)Diﬁlz =0
PoanPD,sp = 0iPoiny  Bi=12 . (A.10)

We now show that for F; and Ejg these projectors are determined using Fy;. In principle
the Fq; derivation of the projectors can be also carried out for Ds, which corresponds to
the six-dimensional case, but it is not needed because in section 6 we have used the explicit
form of the structure constants, which encodes automatically the projectors.

We first consider the case of E7. In section 4 we have shown that the invariant tensor
S i‘(l @ resulting from the commutator of the 1-form and the 2-form satisfies the constraints
of egs. (4.13) and (4.14). These constraints follow from the Jacobi identities of the Ej;
algebra. On the other hand, the Fy; algebra imposes that the 3-form generators in four
dimensions belong to the 912, which implies that the indices M« must be projected on the
912. This can be seen from the index structure of S4'® because the only way of building
an invariant from tensoring a 912 index with the product 56 ® 133 is that this product is
indeed projected on the 912. By looking at the general form of the projectors in eq. (A.9),
we thus must require that Si\([ @ satisfies the conditions

MpB oN
Psean 54 98y = 0
MB oN M
Por2on S 957 = 54 o
MpB oN
Poasopn 4 95y = 0 (A.11)
and comparing these three conditions with egs. (4.13) and (4.14) we determine a constraint

on the parameters a, b and ¢ in eq. (A.9). Indeed, the first condition is automatically sat-
isfied because it reproduces eq. (4.13), while the second and the third reproduce eq. (4.14)
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provided that
b

1—0:

We now derive the constraints resulting from eq. (A.10) in case of E7. The first

_9 (A.12)

condition is automatically satisfied, while the second condition gives

1
§9a+£b+c:0 , (A.13)

where we have made use of eq. (A.6) in which we have substituted the dual Coxeter
number and the Dynkin index for Fy, which are listed in table 3. In order to derive the
other constraints, one makes use of the identities

7
Dan™DgppDPNC = gDaPQ ;

1 1 1 N
DanNDp? = 8508 + 570N 0p — 5 Ve + DFODY (A1)

(A.14)

and

1 3
(D" Da)g D DR = 22036, = (D7 Da)p

5

- E(Dam) M (A.16)

which can all be proven using the results listed in this appendix and in section 4. Using
these results, the last condition in eq. (A.10), with i = j = 1, gives

19 7 3
§a2 + Zab+2ac— gbZ =a
e — DB — b
12
1
2, L2
c +24b c . (A.17)

Substituting eq. (A.12) into the last of these equations gives

1 12
h b=-——2 |
7 7

CcC =

(A.18)

and from eq. (A.13) one gets a = %. One can show that all the other projector conditions
are satisfied. Substituting this in eq. (A.9) finally gives the E7 projectors

8

MB _ B8 P M
P56, n = EDN Dqap
9120{]\/—7 N aP 7 aN P +7N «
132 12 6
Peasonn = —@DQPDOJPM + 7DaNPD]€M + ?5%5(@ . (A.19)

We now derive from Fj; the projectors of eq. (A.9) for the case of FEz. We first
derive the identities that will be needed. Is section 5 we have introduced the completely

dMNP

symmetric invariant tensors and dysnp, satisfying

d"NPdyng =045 (A.20)
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From eq. (A.20) and the condition that dMNP and dynp are invariant tensors,
Dy NaPOM = D&y Ndpgy =0, (A.21)

one gets
1
DY NaMPRdysq = —ing . (A.22)

One can write the product of two generators in the 27 contracted by the metric g, as
9o DS N DR = 6N 6% + 80369 + a9 dypr (A.23)

as can be deduced from the fact that the product 27 ® 27 ® 27 ® 27 leads to three different
FEs invariants, and the three invariant quantities on the right hand side of eq. (A.23) are
the most general objects one can write down in terms of 67, dN" and dyyp. Eq. (A.5),
applied to the Eg case in which d = 78 and dy = 27, is

26
90503 DN = T (A.24)

Contracting N and P in eq. (A.23) thus leads to

26
200+ B+ v = 9 (A.25)
while contracting M and N gives
a+2764+v=0 . (A.26)

A third relation comes from the identity

13
s D3N Dp%dngr = _ngPR ; (A.27)

which can be derived using eq. (A.21) iteratively, and leads to

13
atfry=—= (A.28)

or alternatively from contracting eq. (A.23) with D7VM , which leads to

1
a=-gv= 1 . (A.29)
The final It i
e final result 1s _1 5 1 - 5 (A30)
=5 T I N '
so that 1 1 5
9apD§ N DB = U 5% + Emg - ngQRdeR . (A.31)
Another useful relation is
1 3 1
(D'Dy)o"dM dppy = —E(DVDa)PM + TO(DQDV)PM + %5?9452 ; (A.32)

which can be derived using the relations given in this appendix.
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In section 5 we have shown that the invariant tensor S*M-N¥ resulting from the com-

mutator of the 1-form and the 3-form satisfies the constraints of egs. (5.9) and (5.13). These
constraints follow from requiring the closure of the Jacobi identities of the £, algebra. On
the other hand, the form of this invariant tensor is dictated by the fact that Fj; imposes
that the 4-form generator is in the 351, and therefore the indices aM of 351 must be
projected on the 351. This can be seen from the index structure of S*NP hecause the
N P antisymmetric indices correspond to the 351 and the only way of building an invari-
ant from tensoring a 351 representation with the product 27 @ 78 is that this product is
indeed projected on the 351. By looking at the general expressions of eq. (A.9) for the
projectors, we therefore must impose the conditions
Paran 54 98y = 0
Pstan 54 957 = 54 9o
Pirsgan S 95, = 0, (A.33)

and comparing these three conditions with egs. (5.9) and (5.13) we determine a constraint
on the parameters a, b and ¢ in eq. (A.9). In particular, the first condition is automatically
satisfied because it reproduces eq. (5.9), while eq. (5.13) implies that the second and the
third equations give the same constraint, that is

b 3
=—= . A.34
1—-c 2 ( )

We now derive the constraints resulting from eq. (A.10) in case of Eg. The first

condition is automatically satisfied, while the second condition gives

26 8
where we have made use of eq. (A.6) in which we have substituted the dual Coxeter number
and the Dynkin index for Eg, which are listed in table 3. The last condition in eq. (A.10),

with ¢ = j = 1, gives

%(IQ + 1—96ab+ 2ac + 1_78b2 =a
2bc — %b2 =b
&+ %b2 =c . (A.36)
Substituting eq. (A.34) into the last of these equations gives
1 6
c=¢ b= o (A.37)

and from eq. (A.35) one gets a = 1%. One can show that all the other projector conditions
are satisfied. Substituting this in eq. (A.9) finally gives the Eg projectors

M3 _ 9 B pr M
PﬁaN = 2_6DN Daop

M 3 6 1
Pma]\é = TOD]%PDQPM - gDaNPD]@M + g(sjj\v/l(;g
45 6 4
P1728£¢/[]\? = _@DngaPM + gDaNPDﬁM + 55%55 . (A.38)
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G| g" |In d d dy a b | c
A fr+1 | S 72 +2r [r+1 | 200 -0+ D) +2) | =5 | -3 | 3
Go 4 1 14 7 27 _% _g %
Fy 9 3 52 26 273 % _% i
Fg 12 3 78 27 351 13_0 _g é
Ey 18 6 133 56 912 % _1_72 %

Table 3. Table giving the dual Coxeter number, the Dynkin index, the dimension of the adjoint,
the fundamental and the D; representations, as well as the parameters a, b and ¢ occurring in
eq. (A.9), for some simple Lie groups (see also [3]).

The projectors of egs. (A.19) and (A.38) that we have obtained from Ej; exactly
coincide with the projectors that one obtains from group theory. In table 3 we list the
dual Coxeter number, the Dynkin index of the fundamental representation, the dimension
of the group d, the dimension of the fundamental representation dy and the dimension d;
of the representation D1, as well as the values of the coefficients a, b and ¢ in eq. (A.9),
for some simple Lie groups. One can see in particular that the values of a, b and ¢ in the
table for Fg and E7 are exactly those that we have derived from FEj;.

B Field strengths and gauge transformations

In this appendix we explicitly evaluate the deformed part of the field strengths up to rank
six from egs. (2.46) and (2.48). For the scalar derivative we find

Fa=9,"(0u+ gAan,O) R)g, . (B.1)

We now write down the field strengths for the gauge fields, which by assumption have all
their Lorentz indices anti-symmetrised and as discussed in section two we do not explicitly
display their scalar factors converting from a linear representation to a non-linear represen-
tation of G. We first display the massless part of the field strengths up to rank 6 included,
determined using eq. (2.46). The result is

0
Fc(al),Nl = 280Aa1,N1 (B.Q)
1
Fc(gl)ag,m =3 |:60Aa1a2,N2 - §La17N2NlacAa27N1 (B-3)
1
FC(C?BG,QG,S,NS =4 |:60Aa1a2a3,N3 - LathévacAazas,NQ + 5(‘[’0«1 Laz)Nle aCAas,Nl (B'4)
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Fc(cgz...a47N4 =5 |:acAal--.a47N4 + La1,N4N386Aa2a3a4,N3 +3 (La1 Laz) o 20 A03047N2

1 1
- §La1a2,N4N2 acAasfm,NQ - E (Lm Laz LU«S)N4N1 acAa4,N1] (B-5)

0
Fc(az...a5,N5 =6 |:acAa1...a5,N5 - Lal,N5N4acAa2...a5,N4 - Lalag,NgNSa Aa3a4a5,N3
1 1
+§(L¢11Laz)N5N360A¢13a4a5,N3 - 5(LalLa2La3)N5N260A¢14a5,N2
1 N2 1 Nl
+§(La1La2a3)N5 aCACMaS,NQ + E(LGILGQLGSLGA)NS aCA%,Nl (B-6)

The order g part of the same field strengths follows from eq. (2.48). The result is

1
ca1 N1 — 29 |:WN2 Cal,N2 + §XM1P1N1AG1,P1AC,M1:|

(B.7)
calag Ny — =39 [W Acaraz,Ns — Lal,Nle WMQNIACO,Q,MQ
;Lal,NQPIXNlMl A@,MIAQM] (B.8)
c(;3a2a3,N3 =4y |:WN4N3Aca1a2a3,N4 — Loy N 2 WM3 50 A i M
—%LGIGQ,NSNIWMNIAWS,NQ + %(LalL@)NSNIWMNlAm,NQ
+%(La1La2)N3P1XNIMIPIAa37M1AC,N1:| (B.9)
Fc(iz...a4,N4 = 59 |:WN5N4Aca1...a4,N5 — Loy N WM N A agan
—Layas, N W Ny Acagar, Ny + (LalL@) MW N, Acagas,Ng
5 (L Lo M %N Ay — (L i L) ™ TV Ay,
;! (Lay La, Lag)N4P1XN1M1 i Aas v ANy (B.10)
Fc(iz...as,m = 69| W™ N, Acar . as. N — Lar N5 WM N, Ao as M
arasNs B WNNC Ao as Ny (Lal Ly )Ny VWM NG Aoy as Ny

N- N: N- N.
W 3N2Aca4¢157N3+(La1La2a3)N5 W 3N2Aca4a5,N3

1
|(La1La2La3) e WNSNzAcaws,Nza +

—L

1
2Lala2a37N5
1

3 g(LGIGQLGSCM)N M WN2N1A0(157N2
1

4 (La1 La2 La3a4 )N5 M WN2 Ny Aca57N2 +
1
T

41 (LalLa2La3La4) WNQNlAC(ls,NQ

(LalLa2La3La4)N5P1XN1M1P1Aa57M1AC,N1 : (B'll)

The reader can easily evaluate the remaining field strengths
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The rigid transformations of the group element also determine the gauge transforma-
tions of the various fields. We list here the gauge transformations for all the forms up to
the 6-form. The 1-form transforms as

5Aa1,N1 = Qqy,N1 — gAM1XfMlN1P1Aa1,P1 ’ (B12)
the 2-form as
1
5"4a10L2,N2 = Qqgjas,Ny — §Aa1,N1aa2,M1fN1M1N2 - gAMlXéV[lNQPQAmaz,P& ) (B13)

the 3-form as

NoN-
0Aayazas,Ns = Gayasas,Ns — Aayas, NaGas, Ny 77 Ny (B.14)
1
N1 N M P; M, P
_gAa1,N1Aa27M1aa37P1f YN T N — gAM, X3 N P Adyasas s s

the 4-form transforms as

1
No M. N3N
5Aa1---a47N4 = Qaqy...as,Ny — §Aa1a2,N2aa3a47M2f 2 21\74 - Aa1a2037N3aa47N1f N 1N4
1
N1N: M7 N: P
_?Aal,NlAag,MlAag,Plam;,Qlf ! 3N4f ! 2N3f IQINQ (B15)
1

No M: N1 M M P,
_ZAa1a2,N2A037N1aa4,M1f ? 2N4f ! 1]\42_9‘/&1\41)(4 1N4 4Aa1...a4,P4,

and the 5-form transforms as

_ N3 No N4N1
5Aa1...a5,N5 - aal...a5,N5 - Aal...a37N3aa4a5,N2f Ny — Aal...a4,N4aa5,le N5
1
_§Aa1a2,N2Aa3a47M2aa57N1

1
N1Ny MiN3 Py N2 Q1R
_EAal,NlAag,MlAa;g,PlA(I47Q1aa5,R1f N5f N4f Ngf No
1
Na N N1 M. M P;
_gAalamNzAas,NlAm,Mlaas7P1f ? 3N5f ! 2N3f ! 1M2

_gAM1X5])VIIN5P5Aa1...a5,P5 . (B16)

N2 N: Mo N-
f 2 3N5f 2 1N3

The parameters a are given in eq. (2.52) in terms of the gauge parameters A. The reader
can easily evaluate the gauge transformations for the higher rank fields.

C Extended spacetime in four dimensions

In this appendix we will consider the four dimensional maximal gauged supergravities
using a non-linear realisation of F11 ®[1. This closely follows the similar derivation of the

maximal gauged supergravities in five dimensions given in reference [16] to which we refer
for the details of how this method works.
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Figure 8. The Ej5 Dynkin diagram.

C.1 The /1 multiplet in four dimensions

The [, multiplet can be thought of as the Fq; representation that contains the momentum
generator P. as its lowest component. The [; multiplet is the representation of E1; with
highest weight A1, where \; is the fundamental weight associated with node 1 of the Dynkin
diagram of F1;. By definition it satisfies the relation (A1, o;) = 01;, where «; is the simple
root associated with node 7 on the Dynkin diagram of ;1. For our derivation we will need
the {1 multiplet of Fqq suitable to four dimensions at low levels.

The most straightforward way to find the components of the [; multiplet as it occurs
in four dimensions at low levels is just to take the /; multiplet in eleven dimensions [15],
carry out the dimensional reduction to four dimensions by hand, and then collect the result
into representations of the internal symmetry group F;. A more sophisticated method is
to realise that the [y representation of Ej; can be obtained by considering the adjoint
representation of Fpo. The Dynkin diagram of Fys is just that of Ey1, but with one node,
the starred node, added with one line attached to node one as in figure 8. To find the [y
representation suitable to eleven dimensions we decompose the adjoint representation of
F5 into representations of the E1; obtained by deleting the starred node in the E15 Dynkin
diagram and keeping only the level one generators; by level we mean the level associated
with node one [15]. Clearly, as the commutation relations respect the level we must find a
representation of Fq1 and it is in fact the [; representation. To find the [ representation
in four dimensions one then carries out the decomposition GL(4,R) ® E7 corresponding to
deleting in addition node four.

Following either method the low level elements of the [y multiplet in four dimensions
are found to be given by [37, 3§]

P, (1) ZM (56) z** (133®1) ZUN0 (912056 @ 1)
zd (8645 ¢ 1539 133 @ 1) --- (C.1)

The indices a,b,... = 0,1,2,3 transform under GL(4,R) in the obvious way while the
numbers in brackets indicate the dimensions of the FE7 representations to which the
charges belong.

The commutators of Ej; appropriate to four dimensions are given in section four.
The commutators of the F; generators with the [; generators are determined by the FEr
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representation that the charges belong to and are given by

(B, 2] = (D) 2"
[Ra Za ﬁ] _ faﬁ 7y
[Ra Zab Nﬁ] — ( a) NZab,Mﬁ+faB Zab,Ny
[Ra Zabc 56] _ f0{5 Zabc [Be] +fae Zabc [68] ) (C2)

The remaining commutators between Fq1 generators and those of the [; multiplet can
be deduced from their Fq5 origin, or just writing down relations compatible with the level
assignments, GL(4,R) character, and using the Jacobi identities. We may define the way
the [; generators occur in the E1; ®, [ algebra by the relations

(R, P,] =0, (RN, P, = 632", (R, P,] = 20}z
[Rabc,N,B’ Pd] _ 35£laZbc],N,87 [Rabcd,[a[ﬂ’Pe] _ 45£aZbcd],[a,8] ) (03)
The normalisation of the [y generators is then fixed by the choice of coefficients on the right
hand side. The fact that the representation of the charges and the E71 generators coincide
on each side of these equations is a consequence of the relationship that exists between the
l; representation and the adjoint representation of Fyq [37]. Physically this is the usual
relationship between fields and the charges to which they couple in the Wess-Zumino term
of a brane action.
The remainder of the commutators may be fixed through the Jacobi identities. For

example, let us consider the Jacobi identity involving [R*M [R»N | P.]]. We find, using the
Eq; commutators of eq. (4.9), that

[R¥M  ZN] = —pMN zaa (C.4)

Now, for convenience we define Z%®N8 Sﬁm Z%A and the Jacobi relation

[RM [Rb>e Py]] implies that
(R0, ZM] = —zebMeand - [ROM, Z00] = —z0bMe (C.5)
The Jacobi relation [R®, [R5, P.]] leads to
[Rabe | ze8) = zabeloh] (C.6)
The final Jacobi identity [R®4, [R%M  P,]] implies both

[Ra’M, ZbC’A] _ _C%Azabc,[aﬁ} and [Rabc,A’ ZM] _ _C%Azabq[aﬁ] . (C?)

Thus the commutators between the E71; generators and those of [; at low levels are
given in equations (C.3) to (C.7).
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C.2 Construction of the four dimensional gauged maximal supergravities

The field strengths and gauge transformations of the massless theory follow in a straight-
forward way from the Fj; algebra, they are essentially the Cartan forms subject to the
appropriate anti-symmetrisation. They are given by the general formula in eq. (2.46) and
more explicitly in section four by setting g = 0. We will now derive the field strengths for
the gauged theory following closely the argument given in [16] for the five-dimensional case.

We begin by choosing the group element of the non-linear realisation of F11 ®,(; to be

g=giga = e TagpY AR (C.8)
where
@R _ Ay g B0 Ay RN g R (C.9)
and
VY — oy (ZM+gTM) Jya,a(Z+gT ) yabva (290 MO gTo0Me) (C.10)
The symbols in this latter equation are defined by
™ =0} R, T = Wi RM
1
Tab,Ma _ g(@%fﬁav _ 2W]%D,]Y\4N)Rab’v, Tabc,[e5] _ W&Rabc,Me’ o (Cll)

The coefficients in these expressions are taken from the results of section 4. The tensor
W3 defined here differs from the tensor denoted in the same way in section 4 by a factor
of 2, and indeed it is defined as

1

which differs from eq. (4.25). Again, this coefficient is taken to reproduce the results of
section 4.

At first sight it may appear that the above group element contains all the generators
of the [; multiplet, but this is not the case. In fact the coordinates y obey projections
conditions that mean that part of the /1y multiplet is absent and plays no role in the
calculation. As discussed in reference [16], the part of [; which is present is the image of a
map from F7; into the l; representation. It is argued [16] that demanding certain natural
properties of this map leads to the constraints on ©Y etc found as a consequence of Jacobi
identities of the deformed algebra in this paper. These constraints on © etc are reflected
in the projections arising from the y coordinates. One may hope that such an argument
may fix the coefficients in egs. (C.11) and (C.12).

For reasons to do with the preservation of the form of the group element under the
action of the group and the required compensating transformations the field strengths of
the gauged supergravity are not given in a simple way by the Cartan forms. However,
as explained in reference [16] we can calculate the variation of the fields in the usual
way by taking a group element gg and considering its effect on the coset representative
gog — ¢’ and find the field strengths by demanding that they be invariant under these
transformations. In particular let us consider ¢ — gog taking go = e”# where the parameter

b obeys the same constraints as the y coordinates. As discussed in reference [16] e>Ze¥Y =

,68,



eV Ze=9T  However, as the final field strengths do not depend on the y coordinates we

95T on the e " term and do not require to know

need only calculate the the effect of e
how the y coordinates change.

Let us first consider the transformation g — gog with gg = e®™ Z™ this leads to the
factor e—9bm O35 R acting on the F; coset representative which is just the same as an Fy;
transformation of the ungauged theory, but with parameter a, = byrOM. At the next level

we consider the transformation gy = eb+2#“", which results in the factor e~ 9baeT®® =

e~ 9ba.aWER™M which is just an Fqp transformation with the parameter a, pr = —gba,o Wiy
Similarly the effect of g9 = ebab.rra 2N g equivalent to an Fj; transformation with
parameter aqp o = —gbab7M5%(@,]\\//[fﬂ/ﬁa — QW][E/D(]J\{/[N) and gg = ebabc,[eﬂvabc’[eé] is equivalent
to an FEq; transformation with parameter agp,4 = —gbabc7[65]W1‘\5/ISi‘1/I €. The result of all

these transformations on the fields is given by

§Aan = —gbpOL (D) N Ay
5Aa1a2,oz - _ngenga’yAalag,a
5Aa1...a3,Moz - _gbpeg(ngNAal...ag,Na + fﬁ’yaAal...ag,M'y) . (Cl?’)

We now consider an Fy; transformations for the gauged theory, that is we take gy = e®

to act on the group element of eq. (C.8);

gog = et Bz Fa ey-YeA-R _ e:v“PaJr[a-R,m“Pa]ey-YJr[a-R,y-Y] ea-ReA-R ) (C14)
As discussed in [16] the transformations resulting from the [R,Y] in the second term do
not affect the dynamics as the final dynamics does not depend on the y coordinates and so
we may ignore this term. The final a - R term has the same effect on the Fy; fields as the

equivalent transformation in the ungauged theory. In the first factor we find e*" Fatla 12,2 FPal

which leads to higher generators in the /1 multiplet. For example, if we take gy = e%a.M ReM

@ Prertas,mZ™  This latter factor then acts like a 1 trans-

we find it leads to the term e
formation on the rest of the coset representative and, as discussed above, it leads to an
r-dependent Fq; transformation.

As a result we can combine the effect of the [; transformations and the x dependence

FE1; transformation together by taking an [y transformation with the parameter

bu () = bar + x%aq,m
ba,o(T) = bga + xbabma
bab,va(x) = bap Mo + T Ccab, Ma
Babe, 5 = Dabe, 5] + T Odavefse] - (C.15)

As noted above we have in addition the usual Fq; transformations with the a parameters
which are related to the above parameters by

1
Qa,M = aabM('I) Qap,oe = §8abb,oz(x)
1 1
Qabe,Ma = gaabbc,Ma(x) QAabed,[5e] = Zaabbcd,[&} (x) : (C16)

,69,



Thus all the transformations can be expressed in terms of the z-dependent parameters b(x).

The resulting transformations of the fields are given by

6A07M = aabM(x) —gbm (:C)AG,NXMNP - gba,a(x)W]% (017)
1 1 N
0Aayary = 58[alba2},v($) + 58[a1|bM($)A\az],N(DV)MN - ng(x)ei\é/[f ﬁ’yAalag,,@

1 1
_igbal,a(x)W&Aag,NDf]y\/[N - ggbmaz,Ma(x)(@g/[fﬁa’y - 2WKC7D£\//IN)

1 1
6Aa1a2a3,Ma = ga[al bagag},Ma(x) + a[al|bM($)*’4|aQaL3},o¢ - EA[al|,MA|a2|,Na|a3]bP(x)(Da)NP
_ng(x)@g(DB)MPAal---aa,Poz - ng(x)@]ﬁVfﬁwaAaL--a&Pv
1
_gWAZba17ﬁ(x)A02a3,a - égwﬁbalﬂ(x)Aa2,PA037MDéVP

_gbal ...a3,[Ba] (x) WJ\B/I

M,QO(A

1 1
514@1___@4,[65] = Zc[ée} ale(x)Aaz...azz,Nﬁ - ﬂD(]xVPC[(Se} al,MAamQAaa,Naaz;bP(x)

1 1 1
+ZD¢J$VPA01,N80L2bP(x)Aascm,E + Zaal ba2,5(x)Aa3a4,6 + Zaalbaz...(m,[ée] (x)

The field strengths are just the objects which are covariant under the above Fq11 ® [q
transformations which at order ¢° agree with those of the massless theory. Thus the order
g variation of F(©), i.e. the variation of the massless field strengths, must cancel the order
¢° variation of the order ¢° variation of the order ¢* part of the field strength, F(). This
computation implies that the field strengths of the gauged theory are given by

Falag,M = 2a[a1Aa2],M + gXNPMA[alNAaQ]P + 4gAa1a2aW]?2
3
Fo,..a3,0 = 3a[a1Aa2a3],a + §(a[a1Aa2,M)Aa3],N(Da)MN

1 MN
+§QA[a1,MAa2,NAa3],PX£2 Dg}Q + GQA[alag,ﬁAag],MWf/DyN

+3g(OM £, + 2gWy DMNY Ay, 0y i
2
Fal...a4,Tn - 48[(11 Aag...a4},Tn - 4(8[(11 Aazas,n)Aa4]7T - g(a[al Aa2,N)Aa3,PAa4]7T(D77)NP

_169W%Aa1...a4,[an} + 49(916‘4fﬁan + 2gWgD£4P)A[al...ag,MaAadT

_4gW]?f[A[ Aaaazd,n + 49W1(3D5MA[@1@WA%,MA@4},T
1
6

aiaz,o

+ gXMNRfoPA[al,MAa27NAa3,PAa4LT . (C18)

The field strengths and the gauge transformations agree with those found in section 4, as
one can see comparing eqs. (4.31) and (4.32) with egs. (C.18) and (C.17), if we identify
the gauge parameters of section 4 as

1 1 1

AM = bM(x) Aa,a = §ba,a Aab,Moz == gbab,Ma Aabc,[ozﬁ] == ZbabC,[Oéﬁ] . (019)

,70,



References

[1] B. de Wit and H. Nicolai, N = 8 supergravity with local SO(8) x SU(8) invariance,
Phys. Lett. B 108 (1982) 285 [SPIRES]; N = 8 supergravity, Nucl. Phys. B 208 (1982) 323
[SPIRES].

[2] H. Nicolai and H. Samtleben, Mazimal gauged supergravity in three dimensions,
Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [SPIRES]; Compact and noncompact
gauged mazimal supergravities in three dimensions, JHEP 04 (2001) 022 [hep-th/0103032]
[SPIRES].

[3] B. de Wit, H. Samtleben and M. Trigiante, On lagrangians and gaugings of maximal
supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [SPIRES].

[4] B. de Wit, H. Samtleben and M. Trigiante, The mazimal D = 5 supergravities,
Nucl. Phys. B 716 (2005) 215 [hep-th/0412173] [SPIRES].

[5] H. Samtleben and M. Weidner, The mazimal D =7 supergravities,
Nucl. Phys. B 725 (2005) 383 [hep-th/0506237] [SPIRES].

[6] B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory,
JHEP 09 (2005) 016 [hep-th/0507289] [SPIRES].

[7] B. de Wit, H. Samtleben and M. Trigiante, The mazimal D = 4 supergravities,
JHEP 06 (2007) 049 [arXiv:0705.2101] [SPIRES].

[8] E. Bergshoeff, H. Samtleben and E. Sezgin, The gaugings of mazximal D = 6 supergravity,
JHEP 03 (2008) 068 [arXiv:0712.4277] [SPIRES].

[9] P.C. West, E11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081]
[SPIRES].

[10] I. Schnakenburg and P.C. West, Kac-Moody symmetries of IIB supergravity,
Phys. Lett. B 517 (2001) 421 [hep-th/0107181] [SPIRES].

[11] 1. Schnakenburg and P.C. West, Massive IIA supergravity as a non-linear realisation,
Phys. Lett. B 540 (2002) 137 [hep-th/0204207] [SPIRES].

[12] A. Kleinschmidt, I. Schnakenburg and P.C. West, Very-eztended Kac-Moody algebras and
their interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198]
[SPIRES].

[13] F. Riccioni and P.C. West, The E11 origin of all mazimal supergravities,
JHEP 07 (2007) 063 [arXiv:0705.0752] [SPIRES].

[14] E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, 11 and the embedding tensor,
JHEP 09 (2007) 047 [arXiv:0705.1304] [SPIRES].

[15] P.C. West, E11, SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098]
[SPIRES].

[16] F. Riccioni and P.C. West, Ej;-extended spacetime and gauged supergravities,
JHEP 02 (2008) 039 [arXiv:0712.1795] [SPIRES].

[17] F. Riccioni and P. West, Local E11, JHEP 04 (2009) 051 [arXiv:0902.4678] [SPIRES].

[18] T. Damour, M. Henneaux and H. Nicolai, E19 and a ’small tension expansion’ of M-theory,
Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [SPIRES].

[19] M. Henneaux, E. Jamsin, A. Kleinschmidt and D. Persson, On the E1/massive type IIA

,71,


http://dx.doi.org/10.1016/0370-2693(82)91194-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B108,285
http://dx.doi.org/10.1016/0550-3213(82)90120-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B208,323
http://dx.doi.org/10.1103/PhysRevLett.86.1686
http://arxiv.org/abs/hep-th/0010076
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0010076
http://dx.doi.org/10.1088/1126-6708/2001/04/022
http://arxiv.org/abs/hep-th/0103032
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0103032
http://dx.doi.org/10.1016/S0550-3213(03)00059-2
http://arxiv.org/abs/hep-th/0212239
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0212239
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.032
http://arxiv.org/abs/hep-th/0412173
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412173
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.028
http://arxiv.org/abs/hep-th/0506237
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506237
http://dx.doi.org/10.1088/1126-6708/2005/09/016
http://arxiv.org/abs/hep-th/0507289
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507289
http://dx.doi.org/10.1088/1126-6708/2007/06/049
http://arxiv.org/abs/0705.2101
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.2101
http://dx.doi.org/10.1088/1126-6708/2008/03/068
http://arxiv.org/abs/0712.4277
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.4277
http://dx.doi.org/10.1088/0264-9381/18/21/305
http://arxiv.org/abs/hep-th/0104081
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0104081
http://dx.doi.org/10.1016/S0370-2693(01)01044-9
http://arxiv.org/abs/hep-th/0107181
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0107181
http://dx.doi.org/10.1016/S0370-2693(02)02124-X
http://arxiv.org/abs/hep-th/0204207
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0204207
http://dx.doi.org/10.1088/0264-9381/21/9/021
http://arxiv.org/abs/hep-th/0309198
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0309198
http://dx.doi.org/10.1088/1126-6708/2007/07/063
http://arxiv.org/abs/0705.0752
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.0752
http://dx.doi.org/10.1088/1126-6708/2007/09/047
http://arxiv.org/abs/0705.1304
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.1304
http://dx.doi.org/10.1016/j.physletb.2003.09.059
http://arxiv.org/abs/hep-th/0307098
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0307098
http://dx.doi.org/10.1088/1126-6708/2008/02/039
http://arxiv.org/abs/0712.1795
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.1795
http://dx.doi.org/10.1088/1126-6708/2009/04/051
http://arxiv.org/abs/0902.4678
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.4678
http://dx.doi.org/10.1103/PhysRevLett.89.221601
http://arxiv.org/abs/hep-th/0207267
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0207267

[25]

supergravity correspondence, Phys. Rev. D 79 (2009) 045008 [arXiv:0811.4358] [SPIRES];
Massive type ITA supergravity and Eqg, Fortsch. Phys. 57 (2009) 580 [arXiv:0901.4848]
[SPIRES].

E.A. Bergshoeff et al., E1og and gauged maximal supergravity, JHEP 01 (2009) 020
[arXiv:0810.5767] [SPIRES].

N. Marcus and J.H. Schwarz, Three-dimensional supergravity theories,
Nucl. Phys. B 228 (1983) 145 [SPIRES].

K. Koepsell, H. Nicolai and H. Samtleben, On the Yangian (Y (Es)) quantum symmetry of
mazximal supergravity in two dimensions, JHEP 04 (1999) 023 [hep-th/9903111] [SPIRES].

E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The lagrangian,
Phys. Lett. B 80 (1978) 48 [SPIRES]; The SO(8) supergravity,
Nucl. Phys. B 159 (1979) 141 [SPIRES].

B. Julia, Group disintegrations, in Superspace and supergravity, S.W. Hawking and M. Rocek
eds., Cambridge University Press, Cambridge U.K. (1981);

E. Cremmer, Supergravities in 5 dimensions, in Superspace and supergravity, S.W. Hawking
and M. Rocek eds., Cambridge University Press, Cambridge U.K. (1981).

Y. Tanii, N = 8 supergravity in siz-dimensions, Phys. Lett. B 145 (1984) 197 [SPIRES].

E. Sezgin and A. Salam, Mazimal extended supergravity theory in seven-dimensions,

Phys. Lett. B 118 (1982) 359 [SPIRES].
A. Salam and E. Sezgin, D = 8 supergravity, Nucl. Phys. B 258 (1985) 284 [SPIRES].

E. Bergshoeff, T. de Wit, U. Gran, R. Linares and D. Roest, (Non-)Abelian gauged
supergravities in nine dimensions, JAEP 10 (2002) 061 [hep-th/0209205] [SPIRES].

E. Cremmer, B. Julia, H. Lii and C.N. Pope, Dualisation of dualities. II: twisted self-duality
of doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106]
[SPIRES].

E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited,
JHEP 08 (2005) 098 [hep-th/0506013] [SPIRES].

E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortin and F. Riccioni, ITA ten-forms and the
gauge algebras of mazimal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280]
[SPIRES].

P.C. West, F11, ten forms and supergravity, JHEP 03 (2006) 072 [hep-th/0511153]
[SPIRES].

J. Polchinski and E. Witten, Evidence for heterotic-type I string duality,

Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [SPIRES];

E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P.K. Townsend, Duality of type
II 7-branes and 8-branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [SPIRES].

B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities, tensor hierarchies and
M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [SPIRES].

B. de Wit and H. Samtleben, Gauged mazximal supergravities and hierarchies of nonabelian
vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [SPIRES].

C. Hillmann, Generalized E(7(7)) coset dynamics and D = 11 supergravity,
JHEP 03 (2009) 135 [arXiv:0901.1581] [SPIRES].

,72,


http://dx.doi.org/10.1103/PhysRevD.79.045008
http://arxiv.org/abs/0811.4358
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.4358
http://dx.doi.org/10.1002/prop.200900040
http://arxiv.org/abs/0901.4848
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.4848
http://dx.doi.org/10.1088/1126-6708/2009/01/020
http://arxiv.org/abs/0810.5767
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.5767
http://dx.doi.org/10.1016/0550-3213(83)90402-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B228,145
http://dx.doi.org/10.1088/1126-6708/1999/04/023
http://arxiv.org/abs/hep-th/9903111
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9903111
http://dx.doi.org/10.1016/0370-2693(78)90303-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B80,48
http://dx.doi.org/10.1016/0550-3213(79)90331-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B159,141
http://dx.doi.org/10.1016/0370-2693(84)90337-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B145,197
http://dx.doi.org/10.1016/0370-2693(82)90204-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B118,359
http://dx.doi.org/10.1016/0550-3213(85)90613-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B258,284
http://dx.doi.org/10.1088/1126-6708/2002/10/061
http://arxiv.org/abs/hep-th/0209205
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0209205
http://dx.doi.org/10.1016/S0550-3213(98)00552-5
http://arxiv.org/abs/hep-th/9806106
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9806106
http://dx.doi.org/10.1088/1126-6708/2005/08/098
http://arxiv.org/abs/hep-th/0506013
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506013
http://dx.doi.org/10.1088/1126-6708/2006/07/018
http://arxiv.org/abs/hep-th/0602280
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602280
http://dx.doi.org/10.1088/1126-6708/2006/03/072
http://arxiv.org/abs/hep-th/0511153
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0511153
http://dx.doi.org/10.1016/0550-3213(95)00614-1
http://arxiv.org/abs/hep-th/9510169
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9510169
http://dx.doi.org/10.1016/0550-3213(96)00171-X
http://arxiv.org/abs/hep-th/9601150
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9601150
http://dx.doi.org/10.1088/1126-6708/2008/02/044
http://arxiv.org/abs/0801.1294
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.1294
http://dx.doi.org/10.1002/prop.200510202
http://arxiv.org/abs/hep-th/0501243
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0501243
http://dx.doi.org/10.1088/1126-6708/2009/03/135
http://arxiv.org/abs/0901.1581
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.1581

[37] P.C. West, E11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052
[hep-th/0406150] [SPTRES].

[38] P.P. Cook and P.C. West, Charge multiplets and masses for Ey1, JHEP 11 (2008) 091
[arXiv:0805.4451] [SPIRES].

,73,


http://dx.doi.org/10.1088/1126-6708/2004/08/052
http://arxiv.org/abs/hep-th/0406150
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0406150
http://dx.doi.org/10.1088/1126-6708/2008/11/091
http://arxiv.org/abs/0805.4451
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.4451

	Introduction
	The general method
	D=3
	D=4
	D=5
	D=6
	D=7
	Embedding tensor in the 15 of SL(5,R)
	Embedding tensor in the 40 of SL(5,R)

	D=8
	Embedding tensor in the (3,2) of SL(3,R) x SL(2,R)
	Embedding tensor in the (bar(6),2) of SL(3,R) x SL(2,R)

	D=9
	Embedding tensor in the 3 of SL(2,R)
	Embedding tensor in the 2 of SL(2,R)

	Form field equations and duality conditions
	Conclusions
	Group theory conventions and projectors
	Field strengths and gauge transformations
	Extended spacetime in four dimensions
	The l(1) multiplet in four dimensions
	Construction of the four dimensional gauged maximal supergravities


